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CHAPTER

ONE

ABOUT

1.1 Overview

TransformerSum is a library that aims to make it easy to train, evaluate, and use machine learning transformer
models that perform automatic summarization. It features tight integration with huggingface/transformers which
enables the easy usage of a wide variety of architectures and pre-trained models. There is a heavy emphasis on code
readability and interpretability so that both beginners and experts can build new components. Both the extractive and
abstractive model classes are written using pytorch_lightning, which handles the PyTorch training loop logic, enabling
easy usage of advanced features such as 16-bit precision, multi-GPU training, and much more. TransformerSum
supports both the extractive and abstractive summarization of long sequences (4,096 to 16,384 tokens) using the
longformer (extractive) and LongformerEncoderDecoder (abstractive), which is a combination of BART (paper) and
the longformer. TransformerSum also contains models that can run on resource-limited devices while still maintaining
high levels of accuracy. Models are automatically evaluated with the ROUGE metric but human tests can be conducted
by the user.

Check out the installation instructions and the tutorial to get started training models and summarizing text.

Both extractive and abstractive processed datasets and trained models can be found in their respective sections. Alterna-
tively, you can browse from the root folder in Google Drive that contains all of the models and datasets: TransformerSum
Root Folder.

1.2 Features

• For extractive summarization, compatible with every huggingface/transformers transformer encoder model.

• For abstractive summarization, compatible with every huggingface/transformers EncoderDecoder and Seq2Seq
model.

• Currently, 10+ pre-trained extractive models available to summarize text trained on 3 datasets (CNN-DM, Wik-
iHow, and ArXiv-PebMed).

• Contains pre-trained models that excel at summarization on resource-limited devices: On CNN-DM,
mobilebert-uncased-ext-sum achieves about 97% of the performance of BertSum while containing 4.45
times fewer parameters. It achieves about 94% of the performance of MatchSum (Zhong et al., 2020), the cur-
rent extractive state-of-the-art.

• Contains code to train models that excel at summarizing long sequences: The longformer (extractive) and Long-
formerEncoderDecoder (abstractive) can summarize sequences of lengths up to 4,096 tokens by default, but can
be trained to summarize sequences of more than 16k tokens.

• Integration with huggingface/nlp means any summarization dataset in the nlp library can be used for both ab-
stractive and extractive training.
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• “Smart batching” (extractive) and trimming (abstractive) support to not perform unnecessary calculations (speeds
up training).

• Use of pytorch_lightning for code readability.

• Extensive documentation.

• Three pooling modes (convert word vectors to sentence embeddings): mean or max of word embeddings in
addition to the CLS token.

1.3 Significant People

The project was created by Hayden Housen during his junior and senior years of high school as part of the Sci-
ence Research program. It is actively maintained and updated by him and the community. You can contribute at
HHousen/TransformerSum.

1.4 Extractive vs Abstractive Summarization

Models that perform extractive summarization essentially pick the best most representative sentences and copy them
into a summary. Models that perform abstractive summarization generate new sentences that capture general ideas.

Extractive summarization is a binary classification problem. Either classify the sentence as “should be in he sum-
mary” or “should NOT be in the summary”.

Abstractive summarization is a sequence to sequence text generation problem. This is significantly more difficult
than extractive summarization since the machine has to synthesize the information it “reads” into a new form.

1.5 ROUGE Scores

This project uses ROUGE to evaluate summarization quality. ROUGE, or Recall-Oriented Understudy for Gisting
Evaluation, is a set of metrics used to evaluate automatic summarization systems. However, automatic metrics, such
as ROUGE and METEOR, have serious limitations. They only assess content selection by calculating lexical overlap
and do not account for other quality aspects, such as fluency, grammaticality, or coherence. More information about
the limitations of ROUGE in sebastianruder/NLP-progress.

Links:

• ROUGE Paper (PDF)

• ROUGE Score Wikipedia

• Overview of How ROUGE Works (Archive)

This project integrates with rouge-score and pyrouge and either can be used when calculating ROUGE scores during
the testing phase.

rouge-score is the default option. It is a pure python implementation of ROUGE designed to replicate the results
of the official ROUGE package. While this option is cleaner (no perl installation required, no temporary directories,
faster processing) than using pyrouge, this option should not be used for official results due to minor score differences
with pyrouge.

pyrouge is a python interface to the official ROUGE 1.5.5 perl script. Using this option will produce official scores,
but it requires a complicated setup. To install ROUGE 1.5.5 I followed this StackOverflow answer and ran the below
commands from Kavita Ganesan (Archive) to fix the WordNet exceptions:
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cd data/WordNet-2.0-Exceptions/
./buildExeptionDB.pl . exc WordNet-2.0.exc.db

cd ../
rm WordNet-2.0.exc.db
ln -s WordNet-2.0-Exceptions/WordNet-2.0.exc.db WordNet-2.0.exc.db

Note: The official ROUGE website was http://www.berouge.com/Pages/default.aspx but has been offline for many
years. The Internet Archive still has a copy here. However, you can still download ROUGE 1.5.5 from andersjo/pyrouge.

You can compute the ROUGE scores between a candidate text file and a ground-truth text file where each file contains
one summary per line with the following command:

python -c "import helpers; helpers.test_rouge('tmp', 'save_gold.txt', 'save_pred.txt')"

1.5.1 Two flavors of ROUGE-L

In the ROUGE paper, two flavors of ROUGE-L are described:

1. sentence-level: Compute longest common subsequence (LCS) between two pieces of text. Newlines are ignored.
This is called rougeL in this package.

2. summary-level: Newlines in the text are interpreted as sentence boundaries, and the LCS is computed between
each pair of reference and candidate sentences, and something called union-LCS is computed. This is called
rougeLsum in the rouge-score package.

Both ROUGE-L and ROUGE-L-SUM are calculated in this library.

1.5. ROUGE Scores 5
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CHAPTER

TWO

GETTING STARTED

2.1 Install

Installation is made easy due to conda environments. Simply run this command from the root project directory:
conda env create --file environment.yml and conda will create and environment called transformersum
with all the required packages from environment.yml. The spacy en_core_web_sm model is required for the
convert_to_extractive.py script to detect sentence boundaries.

2.1.1 Step-by-Step Instructions

1. Clone this repository: git clone https://github.com/HHousen/transformersum.git.

2. Change to project directory: cd transformersum.

3. Run installation command: conda env create --file environment.yml (and activate with conda
activate transformersum.

4. (Optional) If using the convert_to_extractive.py script then download the en_core_web_sm spacy model:
python -m spacy download en_core_web_sm.

2.2 Tutorial

2.2.1 I just want to summarize some text

GUI

If all you want to do is summarize a text string using a pre-trained model then follow the below steps:

1. Download a summarization model. Link to pre-trained extractive models. Link to pre-trained abstractive mod-
els.

2. Put the model in a folder named models in the project root.

3. Run python predictions_website.py and open the link.

4. On the website enter your text, select your downloaded model, and click “SUBMIT”.

7
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Programmatically

If you want to summarize text using a pre-trained model from python code then follow the below steps:

1. Download a summarization model. Link to pre-trained extractive models. Link to pre-trained abstractive mod-
els.

2. Instantiate the model:

For extractive summarization:

from extractive import ExtractiveSummarizer
model = ExtractiveSummarizer.load_from_checkpoint("path/to/ckpt/file")

For abstractive summarization:

from abstractive import AbstractiveSummarizer
model = AbstractiveSummarizer.load_from_checkpoint("path/to/ckpt/file")

3. Run prediction on a string of text:

text_to_summarize = "Something Awesome"
summary = model.predict(text_to_summarize)

Important: When loading a pre-trained model you may encounter this common error:

RuntimeError: Error(s) in loading state_dict for ExtractiveSummarizer:
Missing key(s) in state_dict: "word_embedding_model.embeddings.position_ids".

To solve this issue, set strict=False like so: model = ExtractiveSummarizer.
load_from_checkpoint("distilroberta-base-ext-sum.ckpt", strict=False).

Note: If you are using an ExtractiveSummarizer, then you can pass num_summary_sentences to specify the
number of sentences in the output summary. For instance, summary = model.predict(text_to_summarize,
num_summary_sentences=5). The default is 3 sentences. More info at extractive.ExtractiveSummarizer.
predict().

2.2.2 Extractive Summarization

Outline:

1. Convert dataset from abstractive to extractive (different for each dataset)

2. Create features and tokenize the extractive dataset (different for every model)

3. Train the model using the training script

4. Test the model using the training script

Lets train a model that performs extractive summarization. In this tutorial we will be using BERT, but you can easily
use any autoencoding model from huggingface/transformers.

Note: Autoencoding models are pretrained by corrupting the input tokens in some way and trying to reconstruct the
original sentence. They correspond to the encoder of the original transformer model in the sense that they get access to

8 Chapter 2. Getting Started
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the full inputs without any mask. Those models usually build a bidirectional representation of the whole sentence. They
can be fine-tuned and achieve great results on many tasks such as text generation, but their most natural application is
sentence classification or token classification. A typical example of such models is BERT. For more information about
the different type of transformer models go to the Huggingface “Summary of the models” page.

The first step to train this model is to download the data. You can see all the datasets that are natively supported on the
Extractive Supported Datasets page. We will be using the well-known CNN/DailyMail dataset since its summaries are
relatively extractive and the input articles are not incredibly long. You can download the data from the “Data Download
Link” link on the CNN/DM page. You can skip directly to step 2 as listed above by downloading the “Extractive Version”
or you can skip to step 3 by downloading the bert-base-uncased-ext-sum model data from CNN/DM.

To be clear, this is an abstractive dataset so we will convert it to the extractive task using the convert_to_extractive.
py script. You can read more about this script on the Convert Abstractive to Extractive Dataset page, but in short
it creates a completely extractive summary that maximizes the ROUGE score between itself and the ground-truth
abstractive summary. Labels (a list of 0s and 1s where 0s correspond to sentences that should not be in the summary
and 1s correspond to sentences that should be in the summary) can be generated from this extractive summary. Visit
Convert Abstractive to Extractive Dataset if you want to do this to your own dataset. For now, all you need to understand
is that the above happens. You can download the preprocessed data instead of recomputing and recreating it yourself.
However, there is one more step you can skip by downloading preprocessed data.

Command to convert dataset to extractive (more info):

python convert_to_extractive.py ./datasets/cnn_dailymail_processor/cnn_dm --shard_
→˓interval 5000 --compression --add_target_to test

Once we have an extractive dataset, we need to convert the text into features that the computer can under-
stand. This includes input_ids, attention_mask, sent_rep_token_ids, and more. The extractive.
ExtractiveSummarizer.forward() and data.SentencesProcessor.get_features() docstrings explains
these features nicely. The huggingface/transformers glossary is a good resource as well. This conversion to model-
specific features happens automatically before training begins. Since the features are model-specific, the training script
is responsible for converting the data. It creates a SentencesProcessor that does most of the heavy lifting. You can
learn more about this automatic preprocessing on the Automatic Preprocessing page.

Command to only pre-process the data and stop right before training would begin (more info):

python main.py --data_path ./datasets/cnn_dailymail_processor/cnn_dm --use_logger␣
→˓tensorboard --model_name_or_path bert-base-uncased --model_type bert --do_train --only_
→˓preprocess

If you didn’t run the above commands then download the bert-base-uncased-ext-sum model data from CNN/DM.
You can do this from the command line with gdown <link_to_data> (install gdown with pip install gdown).
Extract the data with tar -xzvf bert-base-uncased.tar.gz. Now you are ready to train. The BERT model will
be downloaded automatically by the huggingface/transformers library.

Training command:

python main.py \
--model_name_or_path bert-base-uncased \
--model_type bert \
--data_path ./bert-base-uncased \
--max_epochs 3 \
--accumulate_grad_batches 2 \
--warmup_steps 2300 \
--gradient_clip_val 1.0 \
--optimizer_type adamw \

(continues on next page)

2.2. Tutorial 9
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(continued from previous page)

--use_scheduler linear \
--do_train --do_test \
--batch_size 16

You can learn more about the above command on Training an Extractive Summarization Model.

Important: More example training commands can be found on the TransformerSum Weights & Biases page. Just
click the name of a training run, go to the overview page by clicking the “i” icon in the top left, and look at the command
value.

2.2.3 Abstractive Summarization

Lets train a model that performs abstractive summarization. Whereas autoencoding models are used for extractive sum-
marization, sequence-to-sequence (seq2seq) models are used for abstractive summarization. In short, autoregressive
models correspond to the decoder of the original transformer model, autoencoding models correspond to the encoder,
and sequence-to-sequence models use both the encoder and the decoder of the original transformer.

Note: Sequence-to-sequence models use both the encoder and the decoder of the original transformer, either for
translation tasks or by transforming other tasks to sequence-to-sequence problems. They can be fine-tuned to many tasks
but their most natural applications are translation, summarization and question answering. The original transformer
model is an example of such a model (only for translation), T5 is an example that can be fine-tuned on other tasks.

You can easily fine-tune a seq2seq model on a summarization dataset using the summarization examples in hugging-
face/transformers. Thus, in this project we focus on being able to use any autoencoding model with a autoregressive
model to create an EncoderDecoderModel. We also focus on performing abstractive summarization on long sequences
(or see the below short explanation).

In this tutorial we will be constructing bert-to-bert, but you can easily use a different model combi-
nation from huggingface/transformers. The --model_name_or_path option specifies the encoder and the
--decoder_model_name_or_path specifies the decoder. If --decoder_model_name_or_path is not set then the
value of --model_name_or_path is used for the decoder.

Any summarization dataset from huggingface/nlp can be used for training by only changing 4 options (specifically
--dataset, --dataset_version, --data_example_column, and --data_summarized_column). The nlp li-
brary will handle downloading and pre-processing while the abstractive.py script will handle tokenization auto-
matically. The CNN/DM dataset is the default so if you want to use that dataset you don’t need to specify any options
concerning data. There is a list of suggested datasets at Abstractive Supported Datasets.

So, in brief, training an abstractive model is as easy as running one command. Go to Example for an example training
command.

Long Sequences Abstractive - Quick Tutorial: Set --model_name_or_path to allenai/led-base-16384 or
allenai/led-large-16384. You can now create summaries from sequences up to 16,384 tokens using the LED.
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2.3 Long Sequence Summarization

This project can summarize long sequences (where long sequences are considered those greater than 512-1024 tokens)
using both extractive and abstractive models.

To perform extractive summarization on long sequences, simply use the longformer model as
the word_embedding_model, which is specified by --model_name_or_path. In other words, set
--model_name_or_path to allenai/longformer-base-4096 or allenai/longformer-large-4096 to
summarize documents of max length 4,096 tokens. For the most up-to-date model shortcut codes visit the huggingface
pretrained models page and the community models page.

To perform abstractive summarization on long sequences, simply use the LED (LongformerEncoderDecoder)
model, which is specified by --model_name_or_path. In other words, set --model_name_or_path to allenai/
led-base-16384 or allenai/led-large-16384 to summarize documents of max length 16,384 tokens. For the
most up-to-date model shortcut codes visit the community models page. Long abstractive summarization used to re-
quire a complicated setup with specific versions of three separate libraries. But, as of huggingface/transformers
v4.2.0, the LED was incorporated directly into the library, thus simplifying the fine-tuning process.

Abstractive text summarization is a sequence-to-sequence problem solved by sequence-to-sequence models. However,
state-of-the-art seq2seq models only function on short sequences. Nevertheless, BART can be modified to use the
sliding window attention from the longformer to create a seq2seq model that can abstractively summarize sequences
up to 16,384 tokens. Visit Abstractive Long Summarization for more information.

2.3. Long Sequence Summarization 11
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CHAPTER

THREE

MAIN SCRIPT

The same script is used to train, validate, and test both extractive and abstractive models. The --mode argument
switches between using ExtractiveSummarizer and AbstractiveSummarizer, with ExtractiveSummarizer
as the default.

Note: The below --help output only shows the generic commands that can be used for both extractive and abstractive
models. Run the command with the --mode set to see the commands specific to each summarization technique. The
--help output for each is also in this documentation: Extractive and Abstractive

All training arguments can be found in the pytorch_lightning trainer documentation.

Output of python main.py --help:

usage: main.py [-h] [--mode {extractive,abstractive}]
[--default_root_dir DEFAULT_ROOT_DIR]
[--weights_save_path WEIGHTS_SAVE_PATH] [--learning_rate LEARNING_RATE]
[--min_epochs MIN_EPOCHS] [--max_epochs MAX_EPOCHS]
[--min_steps MIN_STEPS] [--max_steps MAX_STEPS]
[--accumulate_grad_batches ACCUMULATE_GRAD_BATCHES]
[--check_val_every_n_epoch CHECK_VAL_EVERY_N_EPOCH] [--gpus GPUS]
[--gradient_clip_val GRADIENT_CLIP_VAL] [--overfit_batches OVERFIT_

→˓BATCHES]
[--train_percent_check TRAIN_PERCENT_CHECK]
[--val_percent_check VAL_PERCENT_CHECK]
[--test_percent_check TEST_PERCENT_CHECK] [--amp_level AMP_LEVEL]
[--precision PRECISION] [--seed SEED] [--profiler]
[--progress_bar_refresh_rate PROGRESS_BAR_REFRESH_RATE]
[--num_sanity_val_steps NUM_SANITY_VAL_STEPS]
[--use_logger {tensorboard,wandb}] [--wandb_project WANDB_PROJECT]
[--gradient_checkpointing] [--do_train] [--do_test]
[--load_weights LOAD_WEIGHTS]
[--load_from_checkpoint LOAD_FROM_CHECKPOINT]
[--resume_from_checkpoint RESUME_FROM_CHECKPOINT]
[--use_custom_checkpoint_callback]
[--custom_checkpoint_every_n CUSTOM_CHECKPOINT_EVERY_N]
[--no_wandb_logger_log_model]
[--auto_scale_batch_size AUTO_SCALE_BATCH_SIZE] [--lr_find]
[--adam_epsilon ADAM_EPSILON] [--optimizer_type OPTIMIZER_TYPE]
[--ranger-k RANGER_K] [--warmup_steps WARMUP_STEPS]
[--use_scheduler USE_SCHEDULER] [--end_learning_rate END_LEARNING_RATE]
[--weight_decay WEIGHT_DECAY] [-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

(continues on next page)
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(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--mode {extractive,abstractive}

Extractive or abstractive summarization training. Default is
'extractive'.

--default_root_dir DEFAULT_ROOT_DIR
Default path for logs and weights. To use this option with␣

→˓the
`wandb` logger specify the `--no_wandb_logger_log_model`␣

→˓option.
--weights_save_path WEIGHTS_SAVE_PATH

Where to save weights if specified. Will override
`--default_root_dir` for checkpoints only. Use this if for
whatever reason you need the checkpoints stored in a␣

→˓different
place than the logs written in `--default_root_dir`. This␣

→˓option
will override the save locations when using a custom␣

→˓checkpoint
callback, such as those created when using
`--use_custom_checkpoint_callback or
`--custom_checkpoint_every_n`. If you are using the `wandb`
logger, then you must also set `--no_wandb_logger_log_model`␣

→˓when
using this option. Model weights are saved with the wandb␣

→˓logs to
be uploaded to wandb.ai by default. Setting this option␣

→˓without
setting `--no_wandb_logger_log_model` effectively creates two
save paths, which will crash the script.

--learning_rate LEARNING_RATE
The initial learning rate for the optimizer.

--min_epochs MIN_EPOCHS
Limits training to a minimum number of epochs

--max_epochs MAX_EPOCHS
Limits training to a max number number of epochs

--min_steps MIN_STEPS
Limits training to a minimum number number of steps

--max_steps MAX_STEPS
Limits training to a max number number of steps

--accumulate_grad_batches ACCUMULATE_GRAD_BATCHES
Accumulates grads every k batches. A single step is one␣

→˓gradient
accumulation cycle, so setting this value to 2 will cause 2
batches to be processed for each step.

--check_val_every_n_epoch CHECK_VAL_EVERY_N_EPOCH
Check val every n train epochs.

--gpus GPUS Number of GPUs to train on or Which GPUs to train on. (default:
-1 (all gpus))

--gradient_clip_val GRADIENT_CLIP_VAL
Gradient clipping value

(continues on next page)
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(continued from previous page)

--overfit_batches OVERFIT_BATCHES
Uses this much data of all datasets (training, validation,␣

→˓test).
Useful for quickly debugging or trying to overfit on purpose.

--train_percent_check TRAIN_PERCENT_CHECK
How much of training dataset to check. Useful when debugging␣

→˓or
testing something that happens at the end of an epoch.

--val_percent_check VAL_PERCENT_CHECK
How much of validation dataset to check. Useful when␣

→˓debugging or
testing something that happens at the end of an epoch.

--test_percent_check TEST_PERCENT_CHECK
How much of test dataset to check.

--amp_level AMP_LEVEL
The optimization level to use (O1, O2, etc...) for 16-bit GPU
precision (using NVIDIA apex under the hood).

--precision PRECISION
Full precision (32), half precision (16). Can be used on CPU,

→˓ GPU
or TPUs.

--seed SEED Seed for reproducible results. Can negatively impact performace
in some cases.

--profiler To profile individual steps during training and assist in
identifying bottlenecks.

--progress_bar_refresh_rate PROGRESS_BAR_REFRESH_RATE
How often to refresh progress bar (in steps). In notebooks,
faster refresh rates (lower number) is known to crash them
because of their screen refresh rates, so raise it to 50 or␣

→˓more.
--num_sanity_val_steps NUM_SANITY_VAL_STEPS

Sanity check runs n batches of val before starting the␣
→˓training

routine. This catches any bugs in your validation without␣
→˓having

to wait for the first validation check.
--use_logger {tensorboard,wandb}

Which program to use for logging. If `wandb` is chosen then␣
→˓model

weights will automatically be uploaded to wandb.ai.
--wandb_project WANDB_PROJECT

The wandb project to save training runs to if `--use_logger`␣
→˓is

set to `wandb`.
--gradient_checkpointing

Enable gradient checkpointing (save memory at the expense of␣
→˓a

slower backward pass) for the word embedding model. More␣
→˓info: ht

tps://github.com/huggingface/transformers/pull/4659#issue-
→˓4248418

71

(continues on next page)
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(continued from previous page)

--do_train Run the training procedure.
--do_test Run the testing procedure.
--load_weights LOAD_WEIGHTS

Loads the model weights from a given checkpoint
--load_from_checkpoint LOAD_FROM_CHECKPOINT

Loads the model weights and hyperparameters from a given
checkpoint.

--resume_from_checkpoint RESUME_FROM_CHECKPOINT
To resume training from a specific checkpoint pass in the␣

→˓path
here. Automatically restores model, epoch, step, LR␣

→˓schedulers,
apex, etc...

--use_custom_checkpoint_callback
Use the custom checkpointing callback specified in `main()`␣

→˓by
`args.checkpoint_callback`. By default this custom callback␣

→˓saves
the model every epoch and never deletes the saved weights␣

→˓files.
You can change the save path by setting the `--weights_save_

→˓path`
option.

--custom_checkpoint_every_n CUSTOM_CHECKPOINT_EVERY_N
The number of steps between additional checkpoints. By␣

→˓default
checkpoints are saved every epoch. Setting this value will␣

→˓save
them every epoch and every N steps. This does not use the␣

→˓same
callback as `--use_custom_checkpoint_callback` but instead␣

→˓uses a
different class called `StepCheckpointCallback`. You can␣

→˓change
the save path by setting the `--weights_save_path` option.

--no_wandb_logger_log_model
Only applies when using the `wandb` logger. Set this␣

→˓argument to
NOT save checkpoints in wandb directory to upload to W&B␣

→˓servers.
--auto_scale_batch_size AUTO_SCALE_BATCH_SIZE

Auto scaling of batch size may be enabled to find the largest
batch size that fits into memory. Larger batch size often␣

→˓yields
better estimates of gradients, but may also result in longer
training time. Currently, this feature supports two modes

→˓'power'
scaling and 'binsearch' scaling. In 'power' scaling, starting
from a batch size of 1 keeps doubling the batch size until an
out-of-memory (OOM) error is encountered. Setting the␣

→˓argument to
'binsearch' continues to finetune the batch size by␣

→˓performing a (continues on next page)
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(continued from previous page)

binary search. 'binsearch' is the recommended option.
--lr_find Runs a learning rate finder algorithm (see

https://arxiv.org/abs/1506.01186) before any training, to␣
→˓find

optimal initial learning rate.
--adam_epsilon ADAM_EPSILON

Epsilon for Adam optimizer.
--optimizer_type OPTIMIZER_TYPE

Which optimizer to use: `adamw` (default), `ranger`,␣
→˓`qhadam`,

`radam`, or `adabound`.
--ranger-k RANGER_K Ranger (LookAhead) optimizer k value (default: 6). LookAhead

keeps a single extra copy of the weights, then lets the
internalized ‘faster’ optimizer (for Ranger, that’s RAdam)
explore for 5 or 6 batches. The batch interval is specified␣

→˓via
the k parameter.

--warmup_steps WARMUP_STEPS
Linear warmup over warmup_steps. Only active if `--use_

→˓scheduler`
is set to linear.

--use_scheduler USE_SCHEDULER
Three options: 1. `linear`: Use a linear schedule that␣

→˓inceases
linearly over `--warmup_steps` to `--learning_rate` then
decreases linearly for the rest of the training process. 2.
`onecycle`: Use the one cycle policy with a maximum learning␣

→˓rate
of `--learning_rate`. (default: False, don't use any␣

→˓scheduler)
3. `poly`: polynomial learning rate decay from `--learning_

→˓rate`
to `--end_learning_rate`

--end_learning_rate END_LEARNING_RATE
The ending learning rate when `--use_scheduler` is poly.

--weight_decay WEIGHT_DECAY
-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --log {DEBUG,INFO,WARNING,ERROR,CRITICAL}

Set the logging level (default: 'Info').

17
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CHAPTER

FOUR

DIFFERENCES FROM PRESUMM/BERTSUM

This project accomplishes a task similar to BertSum/PreSumm (and is based on their research). However,
TransformerSum improves various aspects and adds several features on top of BertSum/PreSumm. The most no-
table improvements are listed below.

Note: PreSumm (Yang Liu and Mirella Lapata) builds on top of BertSum (Yang Liu) by adding abstractive summa-
rization. BertSum was extractive only.

4.1 General

• This project uses pytorch_lighting, which is a template to better organize PyTorch code. It automates most
of the training loop. It also results in easier to read code than plain PyTorch because everything is organized.

• TransformerSum contains comments explaining design decisions and how code works. Significant functions
also have detailed docstrings. See get_features() for an example.

• Easy pre-trained model loading and modification thanks to pytorch_lightning’s load_from_checkpoint()
that is automatically inherited by every pl.LightningModule.

• There is a prediction() function included with the extractive.ExtractiveSummarizer and
abstractive.AbstractiveSummarizer classes that summaries a string. This makes it easy to initial-
ize a model and quickly perform inference.

4.2 Converting a Dataset to Extractive

• Separation between the dataset conversion from abstractive to extractive and the training process. This means
the same converted dataset can be used by any transformer model with further automatic processing.

• The convert_to_extractive.py script uses the more up-to-date spacy whereas BertSum utilizes Stanford
CoreNLP. Spacy has the added benefit of being a python library (while CoreNLP is a java application), which
means easier to understand code.

• Supports the same greedy_selection() and combination_selection() of BertSum.

• A more robust CLI that allows for various desired outputs.

• Built in optional gzip compression.

• Integration with huggingface/nlp means any summarization dataset in the nlp library can be converted to extrac-
tive by only modifying 4 options (specifically --dataset, --dataset_version, --data_example_column,
and --data_summarized_column). The nlp library will handle downloading and pre-processing.

19
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4.3 Pooling for Extractive Models

• Supports the sent_rep_tokens and mean_tokens pooling methods whereas BertSum only supports
sent_rep_tokens. See Pooling Modes for more info.

• Pooling is separated from the main model’s forward() function for easy extendability.

4.4 Data for Extractive Models

• The data processing and loading uses normal PyTorch DataLoader``s and ``Dataset``s instead of
recreations of these classes as in ``BertSum.

• A collate_fn function converts the data from the dataset to tensors suitable for input to the model, as is stand
PyTorch convention.

• The collate_fn function also performs “smart batching.” It performs padding on the necessary information for
each batch, which is more efficient than padding for the entire dataset or each chunk.

• The data.FSIterableDataset class loads a dataset in chunks and is a subclass of torch.utils.data.
IterableDataset. While BertSum also supports chunked loading to lower RAM usage, TransformerSum’s
technique is more robust and directly integrates with PyTorch.

4.5 Extractive Model and Training

• Compatible with every huggingface/transformers transformer encoder model. BertSum can only use Bert,
whereas this project supports all encoders by only changing two options when training.

• Easily extendable with new custom models that are saved in the huggingface/transformers format. In
this way, integration with the longformer was easily accomplished (this integration was since removed since
huggingface/transformers implemented the longformer directly..

• For the extractive component, BertSum supports three classifiers: a linear layer, a transformer, and a LSTM
network. This project supports four different classifiers: linear, a few linear layers with dropout and an acti-
vation function; simple_linear, a single linear layer; transformer, which runs the input through some nn.
TransformerEncoderLayer layers; and transformer_linear, a linear layer combined with a transformer.
The classifier is responsible for removing the hidden features from each sentence embedding and converting them
to a single number. The BertSum paper indicates that the difference between these classifiers is not major.

• The reduction method for the BCE loss function is different in TransformerSum than BertSum. BertSum takes
the sum of the losses for each sentence (ignoring padding) even though it looks like it uses the mean. Five different
reduction methods were tested (see the Loss Functions). There did not appear to a significant difference, but the
best was chosen.

• The batch size parameter of BertSum is not the real batch size (which is likely caused by the custom
DataLoader). In this project batch size is the number of documents processed on the GPU at once.

• Multiple optimizers are supported “out-of-the-box” in TransformerSum without any need to modify the code.

• The OneCycle and linear_schedule_with_warmup schedulers are supported in TransformerSum “out-of-
the-box.”

• Logging of all five loss functions (for both the train and validation sets), accuracy, and more is supported. Weights
& Biases and Tensorboard are supported “out-of-the-box” but pytorch_lightning can integrate several other
loggers.
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4.6 Abstractive Model and Training

• Dataset preparation happens extremely quickly (minutes instead of hours; CNN/DM can be ready to train in
about 10 minutes from the raw data)

• Integration with huggingface/nlp means any summarization dataset in the nlp library can be used for train-
ing by only modifying 4 options (specifically --dataset, --dataset_version, --data_example_column,
and --data_summarized_column). The nlp library will handle downloading and pre-processing while the
abstractive.py script will handle tokenization automatically.

• Compatible with every huggingface/transformers EncoderDecoder model. PreSumm only supports a BERT
encoder and a standard transformer decoder, whereas this project supports all EncoderDecoder models by chang-
ing a single option (--model_name_or_path).

4.7 Where BertSum is Better

• BertSum has an LSTM classifier, which TransformerSum does not replicate.

4.6. Abstractive Model and Training 21
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CHAPTER

FIVE

GENERAL API REFERENCE

This page contains the API reference for modules that contain code used for both the extractive and abstractive sum-
marization components.

5.1 Helpers

class helpers.LabelSmoothingLoss(label_smoothing, tgt_vocab_size, ignore_index=- 100)
CrossEntropyLoss with label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and
p_{prob. computed by model}(w) is minimized. From OpenNMT with modifications: https://github.com/
OpenNMT/OpenNMT-py/blob/e8622eb5c6117269bb3accd8eb6f66282b5e67d9/onmt/utils/loss.py#L186

forward(output, target)
output (FloatTensor): batch_size x n_classes target (LongTensor): batch_size

training: bool

class helpers.SortishSampler(data, batch_size, pad_token_id)
Go through the text data by order of src length with a bit of randomness. From fastai repo with modifications.

key(i)

class helpers.StepCheckpointCallback(step_interval=1000, save_name='model', save_path='.',
num_saves_to_keep=5)

on_batch_end(trainer, pl_module)
Called when the training batch ends.

helpers.block_trigrams(candidate, prediction)
Decrease repetition in summaries by checking if a trigram from prediction exists in candidate

Parameters

• candidate (str) – The string to check for trigrams from prediction

• prediction (list) – A list of strings to extract trigrams from

Returns True if overlapping trigrams detected, False otherwise.

Return type bool

helpers.generic_configure_optimizers(hparams, train_dataloader, params_to_update)
Configure the optimizers. Returns the optimizer and scheduler specified by the values in hparams. This is a
generic function that both the extractive and abstractive scripts use.

helpers.get_optimizer(hparams, optimizer_grouped_parameters)
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helpers.load_json(json_file)
Load a json file even if it is compressed with gzip.

Parameters json_file (str) – Path to json file

Returns (documents, file_path), loaded json and path to file

Return type tuple

helpers.lr_lambda_func(current_step, num_warmup_steps, num_training_steps)

helpers.pad(data, pad_id, width=None, pad_on_left=False, nearest_multiple_of=False)
Pad data with pad_id to width on the right by default but if pad_on_left then left.

helpers.pad_tensors(tensors, pad_id=0, width=None, pad_on_left=False, nearest_multiple_of=False)
Pad tensors with pad_id to width on the right by default but if pad_on_left then left.

helpers.test_rouge(temp_dir, cand, ref )
Compute ROUGE scores using the official ROUGE 1.5.5 package. This function uses the pyrouge python
module to interface with the office ROUGE script. There should be a “<q>” token between each sentence in the
cand and ref files. pyrouge splits sentences based on newlines but we cannot store all the summaries easily
in a single text file if there is a newline between each sentence since newlines mark new summaries. Thus, the
“<q>” token is used in the text files and is converted to a newline in this function. Using “<q>” instead of \\n
also makes it easier to store the ground-truth summaries in the convert_to_extractive.py script.

Parameters

• temp_dir (str) – A temporary folder to store files for input to the ROUGE script.

• cand (str) – The path to the file containing one candidate summary per line with “<q>”
tokens in between each sentence.

• ref (str) – The path to the file containing one ground-truth/gold summary per line with
“<q>” tokens in between each sentence.

Returns Results from the ROUGE script as a python dictionary.

Return type dict
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SIX

EXTRACTIVE PRE-TRAINED MODELS & RESULTS

The recommended model to use is distilroberta-base-ext-sum because of its fast performance, relatively low
number of parameters, and good performance.

6.1 Notes

The distil* models are of special significance. Distil* is a class of compressed models that started with DistilBERT.
DistilBERT stands for Distillated-BERT. DistilBERT is a small, fast, cheap and light Transformer model based on Bert
architecture. It has 40% less parameters than bert-base-uncased, runs 60% faster while preserving 99% of BERT’s
performances as measured on the GLUE language understanding benchmark. DistilBERT is a smaller Transformer
model that bears a lot of similarities with the original BERT model while being lighter, smaller and faster to run.
DistilRoBERTa reaches 95% of RoBERTa-base’s performance on GLUE and is twice as fast as RoBERTa while being
35% smaller. More info at huggingface/transformers.

The remarkable performance to size ratio of the distil* models can be transferred to summarization. distilroberta
is recommended over distilbert because of the architecture improvements that the original RoBERTa brought over
the original BERT. Essentially, distilroberta is more modern than distilbert.

MobileBERT is similar to distilbert in that it is a smaller version of BERT that achieves amazing performance at a
very small size. According to the authors, MobileBERT is 2.64x smaller and 2.45x faster than DistilBERT. DistilBERT
successfully halves the depth of BERT model by knowledge distillation in the pre-training stage and an optional fine-
tuning stage. MobileBERT only uses knowledge transfer in the pre-training stage and does not require a fine-tuned
teacher or data augmentation in the down-stream tasks. DistilBERT compresses BERT by reducing its depth, while
MobileBERT compresses BERT by reducing its width, which has been shown to be more effective. MobileBERT
usually needs a larger learning rate and more training epochs in fine-tuning than the original BERT.

Important: Interactive charts, graphs, raw data, run commands, hyperparameter choices, and more for all trained
models are publicly available on the TransformerSum Weights & Biases page. You can download the raw data for each
model on this site, or download an overview as a CSV. Please open an issue if you have questions about these models.

Additionally, all of the models on this page were trained completely for free using Tesla P100-PCIE-16GB GPUs
on Google Colaboratory. Those that took over 12 hours to train were split into multiple training sessions since
pytorch_lightning enables easy resuming with the --resume_from_checkpoint argument.
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6.2 CNN/DM

Name Comments Model Download Data Download
distilbert-base-uncased-ext-sum None Model & All Checkpoints CNN/DM Bert Uncased
distilroberta-base-ext-sum None Model & All Checkpoints CNN/DM Roberta
bert-base-uncased-ext-sum None Model & All Checkpoints CNN/DM Bert Uncased
roberta-base-ext-sum None Model & All Checkpoints CNN/DM Roberta
bert-large-uncased-ext-sum None Not yet. . . CNN/DM Bert Uncased
roberta-large-ext-sum None Not yet. . . CNN/DM Roberta
longformer-base-4096-ext-sum None Not yet. . . CNN/DM Longformer
mobilebert-uncased-ext-sum Trained with lr=8e-5 Model & All Checkpoints CNN/DM Bert Uncased

6.2.1 CNN/DM ROUGE Scores

Test set results on the CNN/DailyMail dataset using ROUGE F1.

Name ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-Sum
distilbert-base-uncased-ext-sum 42.71 19.91 27.52 39.18
distilroberta-base-ext-sum 42.87 20.02 27.46 39.31
bert-base-uncased-ext-sum 42.78 19.83 27.43 39.18
roberta-base-ext-sum 43.24 20.36 27.64 39.65
bert-large-uncased-ext-sum Not yet. . . Not yet. . . Not yet. . . Not yet. . .
roberta-large-ext-sum Not yet. . . Not yet. . . Not yet. . . Not yet. . .
longformer-base-4096-ext-sum Not yet. . . Not yet. . . Not yet. . . Not yet. . .
mobilebert-uncased-ext-sum 42.01 19.31 26.89 38.53

Note: Currently, distilbert beats bert-base-uncased by 1.0014% ((42.71/42.78+19.91/19.83+27.52/27.
43+39.18/39.18)/4=1.0014197729882865). Since bert-base-uncased has more parameters than distilbert,
this is unusual and is likely a tuning issue. This suggests that tuning the hyperparameters of bert-base-uncased
can improve its performance. distilroberta matches 92.7% of the performance of roberta-base ((42.87/43.
24+20.02/20.36+27.46/27.64+29.31/39.65)/4=0.9268623888753363).

Important: mobilebert-uncased-ext-sum achieves 96.59% ((42.01/43.25+19.31/20.24+38.53/39.63)/
3) of the performance of BertSum while containing 4.45 times (109483009/24582401) fewer parameters. It achieves
94.06% ((42.01/44.41+19.31/20.86+38.53/40.55)/3) of the performance of MatchSum (Zhong et al., 2020),
the current extractive state-of-the-art.
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6.2.2 CNN/DM Training Times and Model Sizes

Name Time Model Size
distilbert-base-uncased-ext-sum 6h 22m 32s 796.4MB
distilroberta-base-ext-sum 6h 21m 37s 980.8MB
bert-base-uncased-ext-sum 12h 51m 17s 1.3GB
roberta-base-ext-sum 13h 7m 3s 1.5GB
bert-large-uncased-ext-sum Not yet. . . Not yet. . .
roberta-large-ext-sum Not yet. . . Not yet. . .
longformer-base-4096-ext-sum Not yet. . . Not yet. . .
mobilebert-uncased-ext-sum 8h 26m 32s 295.6MB

Important: distilroberta-base-ext-sum trains in about 6.5 hours on 1 P100-PCIE-16GB GPU, while Match-
Sum, the current state-of-the-art in extractive summarization on CNN/DM, takes 30 hours on 8 Tesla-V100-16G GPUs
to train. If a V100 is about 2x as powerful as a P100, then it would take 480 hours (30*8*2) to train MatchSum on one
P100. This simplistic approximation suggests that it takes about 74x (480/6.5) more time to train MatchSum than
distilroberta-base-ext-sum.

6.3 WikiHow

Name Comments Model Download Data Download
distilbert-base-uncased-ext-sum None Model & All Checkpoints WikiHow Bert Uncased
distilroberta-base-ext-sum None Model & All Checkpoints WikiHow Roberta
bert-base-uncased-ext-sum None Model & All Checkpoints WikiHow Bert Uncased
roberta-base-ext-sum None Model & All Checkpoints WikiHow Roberta
bert-large-uncased-ext-sum None Not yet. . . WikiHow Bert Uncased
roberta-large-ext-sum None Not yet. . . WikiHow Roberta
mobilebert-uncased-ext-sum Trained with lr=8e-5 Model & All Checkpoints WikiHow Bert Uncased

6.3.1 WikiHow ROUGE Scores

Test set results on the WikiHow dataset using ROUGE F1.

Name ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-Sum
distilbert-base-uncased-ext-sum 30.69 8.65 19.13 28.58
distilroberta-base-ext-sum 31.07 8.96 19.34 28.95
bert-base-uncased-ext-sum 30.68 08.67 19.16 28.59
roberta-base-ext-sum 31.26 09.09 19.47 29.14
bert-large-uncased-ext-sum Not yet. . . Not yet. . . Not yet. . . Not yet. . .
roberta-large-ext-sum Not yet. . . Not yet. . . Not yet. . . Not yet. . .
mobilebert-uncased-ext-sum 30.72 8.78 19.18 28.59

Note: These are the results of an extractive model, which means they are fairly good because they come close
to abstractive models. The R1/R2/RL-Sum results of a base transformer model from the PEGASUS paper are
32.48/10.53/23.86. The net difference from distilroberta-base-ext-sum is +1.41/+1.57/-5.09. Compared to
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the abstractive SOTA prior to PEGASUS, which was 28.53/9.23/26.54, distilroberta-base-ext-sum performs
+2.54/-0.27/+2.41. However, the base PEGASUS model obtains scores of 36.58/15.64/30.01, which are much better
than distilroberta-base-ext-sum, as one would expect.

6.3.2 WikiHow Training Times and Model Sizes

Name Time Model Size
distilbert-base-uncased-ext-sum 3h 42m 12s 796.4MB
distilroberta-base-ext-sum 4h 27m 23s 980.8MB
bert-base-uncased-ext-sum 7h 29m 06s 1.3GB
roberta-base-ext-sum 7h 35m 59s 1.5GB
bert-large-uncased-ext-sum Not yet. . . Not yet. . .
roberta-large-ext-sum Not yet. . . Not yet. . .
mobilebert-uncased-ext-sum 4h 22m 19s 295.6MB

6.4 arXiv-PubMed

Name Comments Model Download Data Download
distilbert-base-uncased-ext-sum None Model & All Checkpoints arXiv-PubMed Bert Uncased
distilroberta-base-ext-sum None Model & All Checkpoints arXiv-PubMed Roberta
bert-base-uncased-ext-sum None Model & All Checkpoints arXiv-PubMed Bert Uncased
roberta-base-ext-sum None Model & All Checkpoints arXiv-PubMed Roberta
bert-large-uncased-ext-sum None Not yet. . . arXiv-PubMed Bert Uncased
roberta-large-ext-sum None Not yet. . . arXiv-PubMed Roberta
longformer-base-4096-ext-sum None Not yet. . . arXiv-PubMed Longformer
mobilebert-uncased-ext-sum None Model & All Checkpoints arXiv-PubMed Bert Uncased

6.4.1 arXiv-PubMed ROUGE Scores

Test set results on the arXiv-PubMed dataset using ROUGE F1.

Name ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-Sum
distilbert-base-uncased-ext-sum 34.93 12.21 19.62 31.00
distilroberta-base-ext-sum 34.70 12.16 19.52 30.82
bert-base-uncased-ext-sum 34.80 12.26 19.67 30.92
roberta-base-ext-sum 34.81 12.26 19.65 30.91
bert-large-uncased-ext-sum Not yet. . . Not yet. . . Not yet. . . Not yet. . .
roberta-large-ext-sum Not yet. . . Not yet. . . Not yet. . . Not yet. . .
longformer-base-4096-ext-sum Not yet. . . Not yet. . . Not yet. . . Not yet. . .
mobilebert-uncased-ext-sum 33.97 11.74 19.63 30.19

Note: These are the results of an extractive model, which means they are fairly good because they come
close to abstractive models. The R1/R2/RL-Sum results of a base transformer model from the PEGASUS pa-
per are 34.79/7.69/19.51 (average of 35.63/7.95/20.00 (arXiv) and 33.94/7.43/19.02 (PubMed)). The net differ-
ence from distilroberta-base-ext-sum is +0.09/-4.47/-11.31. Compared to the abstractive SOTA prior to
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PEGASUS, which was 41.09/14.93/23.57 (average of 41.59/14.26/23.55 (arXiv) and 40.59/15.59/23.59 (PubMed)),
distilroberta-base-ext-sum performs -6.39/-2.77/+7.25. However, the base PEGASUS model obtains scores of
37.39/12.66/23.87 (average of 34.81/10.16/22.50 (arXiv) and 39.98/15.15/25.23 (PubMed)). The large model obtains
scores of 45.10/18.59/26.75 (average of 44.70/17.27/25.80 (arXiv) and 45.49/19.90/27.69 (PubMed)) which are much
better than distilroberta-base-ext-sum, as one would expect.

6.4.2 arXiv-PubMed Training Times and Model Sizes

Name Time Model Size
distilbert-base-uncased-ext-sum 06h 46m 0s 796.4MB
distilroberta-base-ext-sum 06h 33m 58s 980.8MB
bert-base-uncased-ext-sum 14h 40m 10s 1.3GB
roberta-base-ext-sum 14h 39m 43s 1.5GB
bert-large-uncased-ext-sum Not yet. . . Not yet. . .
roberta-large-ext-sum Not yet. . . Not yet. . .
longformer-base-4096-ext-sum Not yet. . . Not yet. . .
mobilebert-uncased-ext-sum 09h 5m 45s 295.6MB
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CHAPTER

SEVEN

EXTRACTIVE SUPPORTED DATASETS

Note: In addition to the below datasets, all of the abstractive datasets can be converted for extractive summarization
and thus be used to train models. See Option 2: Automatic pre-processing through nlp for more information.

There are several ways to obtain and process the datasets below:

1. Download the converted extractive version for use with the training script (which will preprocess the data auto-
matically (tokenization, etc.)). Note that all the provided extractive versions are split every 500 documents and
are compressed. You will have to manually process if you desire different chunk sizes.

2. Download the processed abstractive version. This is the original data after being run through its respective
processor located in the datasets folder.

3. Download the original data in its original form, which depends on how it was obtained in the original paper.

The table under each heading contains quick links to download the data. Beneath that are instructions to process the
data manually.

7.1 CNN/DM

The CNN/DailyMail (Hermann et al., 2015) dataset contains 93k articles from the CNN, and 220k articles the Daily
Mail newspapers. Both publishers supplement their articles with bullet point summaries. Non-anonymized variant in
See et al. (2017).

Type Link
Processor Repository artmatsak/cnn-dailymail
Data Download Link CNN/DM official website
Processed Abstractive Dataset Google Drive
Extractive Version Google Drive

Download and unzip the stories directories from here for both CNN and Daily Mail. The files can be downloaded from
the terminal with gdown, which can be installed with pip install gdown.

pip install gdown
gdown https://drive.google.com/uc?id=0BwmD_VLjROrfTHk4NFg2SndKcjQ
gdown https://drive.google.com/uc?id=0BwmD_VLjROrfM1BxdkxVaTY2bWs
tar zxf cnn_stories.tgz
tar zxf dailymail_stories.tgz
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Note: The above Google Drive links may be outdated depending on the time you are reading this. Check the CNN/DM
official website for the most up-to-date download links.

Next, run the processing code in the git submodule for artmatsak/cnn-dailymail located in datasets/
cnn_dailymail_processor. Run python make_datafiles.py /path/to/cnn/stories /path/to/
dailymail/stories, replacing /`path/to/cnn/stories` with the path to where you saved the cnn/stories
directory that you downloaded; similarly for dailymail/stories.

For each of the URL lists (all_train.txt, all_val.txt and all_test.txt) in cnn_dailymail_processor/
url_lists, the corresponding stories are read from file and written to text files train.source, train.target,
val.source, val.target, and test.source and test.target. These will be placed in the newly created cnn_dm
directory.

The original processing code is available at abisee/cnn-dailymail, but for this project the artmatsak/cnn-
dailymail processing code is used since it does not tokenize and writes the data to text file train.source,
train.target, val.source, val.target, test.source and test.target, which is the format expected by
convert_to_extractive.py.

7.2 WikiHow

WikiHow (Koupaee and Wang, 2018) is a large-scale dataset of instructions from the online WikiHow.com website.
Each of 200k examples consists of multiple instruction-step paragraphs along with a summarizing sentence. The task
is to generate the concatenated summary-sentences from the paragraphs.

Dataset Size 230,843
Average Article Length 579.8
Average Summary Length 62.1
Vocabulary Size 556,461

Type Link
Processor Repository HHousen/WikiHow-Dataset (Original Repo)
Data Download Link wikihowAll.csv (mirror) and wikihowSep.csv
Processed Abstractive Dataset Google Drive
Extractive Version Google Drive

Processing Steps:

1. Download wikihowAll.csv (main repo for most up-to-date links) to datasets/wikihow_processor

2. Run python process.py (runtime: 2m), which will create a new directory called wikihow containing the
train.source, train.target, val.source, val.target, test.source and test.target files necessary
for convert_to_extractive.py.
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7.3 PubMed/ArXiv

ArXiv and PubMed (Cohan et al., 2018) are two long document datasets of scientific publications from
[arXiv.org](http://arxiv.org/) (113k) and PubMed (215k). The task is to generate the abstract from the paper body.

Datasets # docs avg. doc. length (words) avg. summary length (words)
CNN 92K 656 43
Daily Mail 219K 693 52
NY Times 655K 530 38
PubMed (this dataset) 133K 3016 203
arXiv (this dataset) 215K 4938 220

Type Link
Processor Repository HHousen/ArXiv-PubMed-Sum (Original Repo)
Data Download Link PubMed (mirror) and ArXiv (mirror)
Processed Abstractive Dataset Google Drive
Extractive Version Google Drive

Processing Steps:

1. Download PubMed and ArXiv (main repo for most up-to-date links) to datasets/arxiv-pubmed_processor

2. Run the command python process.py <arxiv_articles_dir> <pubmed_articles_dir> (runtime: 5-
10m), which will create a new directory called arxiv-pubmed containing the train.source, train.target,
val.source, val.target, test.source and test.target files necessary for convert_to_extractive.py.

See the repository’s README.md.

Note: To convert this dataset to extractive it is recommended to use the --sentencizer option due to the size of the
dataset. Additionally, the --max_sentence_ntokens should be set to 300 and the --max_example_nsents should
be set to 600. See the Convert Abstractive to Extractive Dataset section for more information. The full command
should be similar to:

python convert_to_extractive.py ./datasets/arxiv-pubmed_processor/arxiv-pubmed \
--shard_interval 5000 \
--sentencizer \
--max_sentence_ntokens 300 \
--max_example_nsents 600
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CHAPTER

EIGHT

CONVERT ABSTRACTIVE TO EXTRACTIVE DATASET

8.1 Overview

This script will reformat an abstractive summarization dataset to be used for extractive summarization by determining
the best extractive summary that maximizes ROUGE scores. It can be used on a dataset composed of the following
file structure: train.source, train.target, val.source, val.target, test.source, and test.target where
each file contains one example per line and the lines of every .train file correspond to the lines in the respective
.target. All the datasets on the Extractive Supported Datasets page will be processed to this format. You can also
process any dataset contained in the huggingface/nlp library. If you use a dataset this way, the downloading and pre-
processing will happen automatically.

8.2 Option 1: Manual Data Download

Simply run convert_to_extractive.py with the path to the data. For example, with the CNN/DM dataset: python
convert_to_extractive.py ./datasets/cnn_dailymail_processor/cnn_dm. However, the recommended
command is:

python convert_to_extractive.py ./datasets/cnn_dailymail_processor/cnn_dm --shard_
→˓interval 5000 --compression --add_target_to test

• --shard_interval processes the file in chunks of 5000 and writes results to disk in chunks of 5000 (saves
RAM)

• --compression compresses each output chunk with gzip (depending on the dataset reduces space usage re-
quirement by about 1/2 to 1/3)

• --add_target_to will save the abstractive target text to the splits (in --split_names) specified.

The default output directory is the input directory that was specified, but the output directory can be changed with
--base_output_path if desired.

If your files are not train, val, and test, then the --split_names argument will let you specify the correct nam-
ing pattern. The --source_ext and --target_ext let you specify the file extension of the source and target files
respectively. These must be different so the process can tell each section apart.
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8.3 Option 2: Automatic pre-processing through nlp

You will need to run the convert_to_extractive.py command with the --dataset, --dataset_version,
--data_example_column, and --data_summarized_column options set. To use the CNN/DM dataset you would
set these arguments as shown below:

--dataset cnn_dailymail \
--dataset_version 3.0.0 \
--data_example_column article \
--data_summarized_column highlights

View the help page (python convert_to_extractive.py --help) for more info about these options. The options
are nearly identical to the abstractive script.

Important: All of the abstractive datasets can be converted for extractive summarization using this method.

The live nlp viewer visualizes the data and describes each dataset that can be used with through parameters.

8.4 Convert To Extractive Tips

Large Dataset? Need to Resume?: The --resume option will read the output directory and determine on
which document the script left off based on the shard_file names. If --shard_interval was None then resum-
ing is not possible. Resuming is guaranteed to produce the same output as if --resume was not used because of
convert_to_extractive.check_resume_success(), which checks to make sure the last line in the shard file is
the same as the line directly before the line to resume with.

Speed: Running Slowly? There is a --sentencizer option to detect sentence boundaries without parsing depen-
dencies. Instead of loading a statistical model using spacy, this option will initialize the English Language object
and add a sentencizer to the pipeline. This is much faster than a DependencyParser but is also less accurate since
the sentencizer uses a simpler, rule-based strategy.

8.5 Custom Datasets

Any dataset in the format described in the Overview can be used with this script. Once converted, training should be
the same as if using CNN/DM from Option 1 because the Convert To Extractive script outputs a consistent format.

8.5.1 Extractive Dataset Format

This section briefly discusses the format of datasets created by the convert_to_extractive script.

The training and validation sets only need the src and labels keys saved as json. The src value should be a list of
lists where each list contains a series of tokens (see below). The labels value is a list of 0s (not in summary) and 1s
(sentence should be in summary) that is the same length as the src value (the number of sentences). Each value in this
list corresponds to a sentence in src. The testing set is special because it needs the src, labels, and tgt keys. The
tgt key represents the target summary as a single string with a <q> between each sentence.

First document in CNN/DM extractive training set:

{'src': [['Editor', "'s", 'note', ':', 'In', 'our', 'Behind', 'the', 'Scenes', 'series',
→˓',', 'CNN', 'correspondents', 'share', 'their', 'experiences', 'in', 'covering', 'news
→˓', 'and', 'analyze', 'the', 'stories', 'behind', 'the', 'events', '.'], ['Here', ',',
→˓'Soledad', "O'Brien", 'takes', 'users', 'inside', 'a', 'jail', 'where', 'many', 'of',
→˓'the', 'inmates', 'are', 'mentally', 'ill', '.'], ['An', 'inmate', 'housed', 'on', 'the
→˓', '"', 'forgotten', 'floor', ',', '"', 'where', 'many', 'mentally', 'ill', 'inmates',
→˓'are', 'housed', 'in', 'Miami', 'before', 'trial', '.'], ['MIAMI', ',', 'Florida', '(',
→˓ 'CNN', ')', '--', 'The', 'ninth', 'floor', 'of', 'the', 'Miami', '-', 'Dade',
→˓'pretrial', 'detention', 'facility', 'is', 'dubbed', 'the', '"', 'forgotten', 'floor',
→˓'.', '"'], ['Here', ',', 'inmates', 'with', 'the', 'most', 'severe', 'mental',
→˓'illnesses', 'are', 'incarcerated', 'until', 'they', "'re", 'ready', 'to', 'appear',
→˓'in', 'court', '.'], ['Most', 'often', ',', 'they', 'face', 'drug', 'charges', 'or',
→˓'charges', 'of', 'assaulting', 'an', 'officer', '--charges', 'that', 'Judge', 'Steven',
→˓ 'Leifman', 'says', 'are', 'usually', '"', 'avoidable', 'felonies', '.', '"'], ['He',
→˓'says', 'the', 'arrests', 'often', 'result', 'from', 'confrontations', 'with', 'police
→˓', '.'], ['Mentally', 'ill', 'people', 'often', 'wo', "n't", 'do', 'what', 'they', "'re
→˓", 'told', 'when', 'police', 'arrive', 'on', 'the', 'scene', '--', 'confrontation',
→˓'seems', 'to', 'exacerbate', 'their', 'illness', 'and', 'they', 'become', 'more',
→˓'paranoid', ',', 'delusional', ',', 'and', 'less', 'likely', 'to', 'follow',
→˓'directions', ',', 'according', 'to', 'Leifman', '.'], ['So', ',', 'they', 'end', 'up',
→˓ 'on', 'the', 'ninth', 'floor', 'severely', 'mentally', 'disturbed', ',', 'but', 'not',
→˓ 'getting', 'any', 'real', 'help', 'because', 'they', "'re", 'in', 'jail', '.'], ['We',
→˓ 'toured', 'the', 'jail', 'with', 'Leifman', '.'], ['He', 'is', 'well', 'known', 'in',
→˓'Miami', 'as', 'an', 'advocate', 'for', 'justice', 'and', 'the', 'mentally', 'ill', '.
→˓'], ['Even', 'though', 'we', 'were', 'not', 'exactly', 'welcomed', 'with', 'open',
→˓'arms', 'by', 'the', 'guards', ',', 'we', 'were', 'given', 'permission', 'to', 'shoot',
→˓ 'videotape', 'and', 'tour', 'the', 'floor', '.', ' '], ['Go', 'inside', 'the', "'",
→˓'forgotten', 'floor', "'", '»', '.'], ['At', 'first', ',', 'it', "'s", 'hard', 'to',
→˓'determine', 'where', 'the', 'people', 'are', '.'], ['The', 'prisoners', 'are',
→˓'wearing', 'sleeveless', 'robes', '.'], ['Imagine', 'cutting', 'holes', 'for', 'arms',
→˓'and', 'feet', 'in', 'a', 'heavy', 'wool', 'sleeping', 'bag'], ['--', 'that', "'s",
→˓'kind', 'of', 'what', 'they', 'look', 'like', '.'], ['They', "'re", 'designed', 'to',
→˓'keep', 'the', 'mentally', 'ill', 'patients', 'from', 'injuring', 'themselves', '.'], [
→˓'That', "'s", 'also', 'why', 'they', 'have', 'no', 'shoes', ',', 'laces', 'or',
→˓'mattresses', '.'], ['Leifman', 'says', 'about', 'one', '-', 'third', 'of', 'all',
→˓'people', 'in', 'Miami', '-', 'Dade', 'county', 'jails', 'are', 'mentally', 'ill', '.
→˓'], ['So', ',', 'he', 'says', ',', 'the', 'sheer', 'volume', 'is', 'overwhelming', 'the
→˓', 'system', ',', 'and', 'the', 'result', 'is', 'what', 'we', 'see', 'on', 'the',
→˓'ninth', 'floor', '.'], ['Of', 'course', ',', 'it', 'is', 'a', 'jail', ',', 'so', 'it',
→˓ "'s", 'not', 'supposed', 'to', 'be', 'warm', 'and', 'comforting', ',', 'but'], ['the',
→˓ 'lights', 'glare', ',', 'the', 'cells', 'are', 'tiny', 'and', 'it', "'s", 'loud', '.
→˓'], ['We', 'see', 'two', ',', 'sometimes', 'three', 'men', '--', 'sometimes', 'in',
→˓'the', 'robes', ',', 'sometimes', 'naked', ',', 'lying', 'or', 'sitting', 'in', 'their
→˓', 'cells', '.'], ['"', 'I', 'am', 'the', 'son', 'of', 'the', 'president', '.'], ['You
→˓', 'need', 'to', 'get', 'me', 'out', 'of', 'here', '!', '"'], ['one', 'man', 'shouts',
→˓'at', 'me', '.'], ['He', 'is', 'absolutely', 'serious', ',', 'convinced', 'that', 'help
→˓', 'is', 'on', 'the', 'way', '--', 'if', 'only', 'he', 'could', 'reach', 'the', 'White
→˓', 'House', '.'], ['Leifman', 'tells', 'me', 'that', 'these', 'prisoner', '-',
→˓'patients', 'will', 'often', 'circulate', 'through', 'the', 'system', ',',
→˓'occasionally', 'stabilizing', 'in', 'a', 'mental', 'hospital', ',', 'only', 'to',
→˓'return', 'to', 'jail', 'to', 'face', 'their', 'charges', '.'], ['It', "'s", 'brutally
→˓', 'unjust', ',', 'in', 'his', 'mind', ',', 'and', 'he', 'has', 'become', 'a', 'strong
→˓', 'advocate', 'for', 'changing', 'things', 'in', 'Miami', '.'], ['Over', 'a', 'meal',
→˓'later', ',', 'we', 'talk', 'about', 'how', 'things', 'got', 'this', 'way', 'for',
→˓'mental', 'patients', '.'], ['Leifman', 'says', '200', 'years', 'ago', 'people', 'were
→˓', 'considered', '"', 'lunatics', '"', 'and', 'they', 'were', 'locked', 'up', 'in',
→˓'jails', 'even', 'if', 'they', 'had', 'no', 'charges', 'against', 'them', '.'], ['They
→˓', 'were', 'just', 'considered', 'unfit', 'to', 'be', 'in', 'society', '.'], ['Over',
→˓'the', 'years', ',', 'he', 'says', ',', 'there', 'was', 'some', 'public', 'outcry', ',
→˓', 'and', 'the', 'mentally', 'ill', 'were', 'moved', 'out', 'of', 'jails', 'and', 'into
→˓', 'hospitals', '.'], ['But', 'Leifman', 'says', 'many', 'of', 'these', 'mental',
→˓'hospitals', 'were', 'so', 'horrible', 'they', 'were', 'shut', 'down', '.'], ['Where',
→˓'did', 'the', 'patients', 'go', '?'], ['They', 'became', ',', 'in', 'many', 'cases', ',
→˓', 'the', 'homeless', ',', 'he', 'says', '.'], ['Leifman', 'says', 'in', '1955', 'there
→˓', 'were', 'more', 'than', 'half', 'a', 'million', 'people', 'in', 'state', 'mental',
→˓'hospitals', ',', 'and', 'today', 'that', 'number', 'has', 'been', 'reduced', '90',
→˓'percent', ',', 'and', '40,000', 'to', '50,000', 'people', 'are', 'in', 'mental',
→˓'hospitals', '.'], ['The', 'judge', 'says', 'he', "'s", 'working', 'to', 'change',
→˓'this', '.'], ['Starting', 'in', '2008', ',', 'many', 'inmates', 'who', 'would',
→˓'otherwise', 'have', 'been', 'brought', 'to', 'the', '"', 'forgotten', 'floor', '"', '
→˓', 'will', 'instead', 'be', 'sent', 'to', 'a', 'new', 'mental', 'health', 'facility',
→˓'--', 'the', 'first', 'step', 'on', 'a', 'journey', 'toward', 'long', '-', 'term',
→˓'treatment', ',', 'not', 'just', 'punishment', '.'], ['Leifman', 'says', 'it', "'s",
→˓'not', 'the', 'complete', 'answer', ',', 'but', 'it', "'s", 'a', 'start', '.'], [
→˓'Leifman', 'says', 'the', 'best', 'part', 'is', 'that', 'it', "'s", 'a', 'win', '-',
→˓'win', 'solution', '.'], ['The', 'patients', 'win', ',', 'the', 'families', 'are',
→˓'relieved', ',', 'and', 'the', 'state', 'saves', 'money', 'by', 'simply', 'not',
→˓'cycling', 'these', 'prisoners', 'through', 'again', 'and', 'again', '.'], ['And', ',',
→˓ 'for', 'Leifman', ',', 'justice', 'is', 'served', '.'], ['E', '-', 'mail', 'to', 'a',
→˓'friend', '.']], 'labels': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
→˓ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]}

(continues on next page)
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(continued from previous page)

First document in CNN/DM extractive testing set:

{'src': [['Marseille', ',', 'France', '(', 'CNN)The', 'French', 'prosecutor', 'leading',
→˓'an', 'investigation', 'into', 'the', 'crash', 'of', 'Germanwings', 'Flight', '9525',
→˓'insisted', 'Wednesday', 'that', 'he', 'was', 'not', 'aware', 'of', 'any', 'video',
→˓'footage', 'from', 'on', 'board', 'the', 'plane', '.'], ['Marseille', 'prosecutor',
→˓'Brice', 'Robin', 'told', 'CNN', 'that', '"', 'so', 'far', 'no', 'videos', 'were',
→˓'used', 'in', 'the', 'crash', 'investigation', '.', '"'], ['He', 'added', ',', '"', 'A
→˓', 'person', 'who', 'has', 'such', 'a', 'video', 'needs', 'to', 'immediately', 'give',
→˓'it', 'to', 'the', 'investigators', '.', '"'], ['Robin', "'s", 'comments', 'follow',
→˓'claims', 'by', 'two', 'magazines', ',', 'German', 'daily', 'Bild', 'and', 'French',
→˓'Paris', 'Match', ',', 'of', 'a', 'cell', 'phone', 'video', 'showing', 'the',
→˓'harrowing', 'final', 'seconds', 'from', 'on', 'board', 'Germanwings', 'Flight', '9525
→˓', 'as', 'it', 'crashed', 'into', 'the', 'French', 'Alps', '.'], ['All', '150', 'on',
→˓'board', 'were', 'killed', '.'], ['Paris', 'Match', 'and', 'Bild', 'reported', 'that',
→˓'the', 'video', 'was', 'recovered', 'from', 'a', 'phone', 'at', 'the', 'wreckage',
→˓'site', '.'], ['The', 'two', 'publications', 'described', 'the', 'supposed', 'video',
→˓',', 'but', 'did', 'not', 'post', 'it', 'on', 'their', 'websites', '.'], ['The',
→˓'publications', 'said', 'that', 'they', 'watched', 'the', 'video', ',', 'which', 'was',
→˓ 'found', 'by', 'a', 'source', 'close', 'to', 'the', 'investigation', '.'], ['"', 'One
→˓', 'can', 'hear', 'cries', 'of', "'", 'My', 'God', "'", 'in', 'several', 'languages',
→˓',', '"', 'Paris', 'Match', 'reported', '.'], ['"', 'Metallic', 'banging', 'can', 'also
→˓', 'be', 'heard', 'more', 'than', 'three', 'times', ',', 'perhaps', 'of', 'the', 'pilot
→˓', 'trying', 'to', 'open', 'the', 'cockpit', 'door', 'with', 'a', 'heavy', 'object', '.
→˓', ' '], ['Towards', 'the', 'end', ',', 'after', 'a', 'heavy', 'shake', ',', 'stronger
→˓', 'than', 'the', 'others', ',', 'the', 'screaming', 'intensifies', '.'], ['"', 'It',
→˓'is', 'a', 'very', 'disturbing', 'scene', ',', '"', 'said', 'Julian', 'Reichelt', ',',
→˓'editor', '-', 'in', '-', 'chief', 'of', 'Bild', 'online', '.'], ['An', 'official',
→˓'with', 'France', "'s", 'accident', 'investigation', 'agency', ',', 'the', 'BEA', ',',
→˓'said', 'the', 'agency', 'is', 'not', 'aware', 'of', 'any', 'such', 'video', '.'], [
→˓'Jean', '-', 'Marc', 'Menichini', ',', 'a', 'French', 'Gendarmerie', 'spokesman', 'in',
→˓ 'charge', 'of', 'communications', 'on', 'rescue', 'efforts', 'around', 'the',
→˓'Germanwings', 'crash', 'site', ',', 'told', 'CNN', 'that', 'the', 'reports', 'were', '
→˓"', 'completely', 'wrong', '"', 'and', '"', 'unwarranted', '.', '"'], ['Cell', 'phones
→˓', 'have', 'been', 'collected', 'at', 'the', 'site', ',', 'he', 'said', ',', 'but',
→˓'that', 'they', '"', 'had', "n't", 'been', 'exploited', 'yet', '.'], ['Menichini',
→˓'said', 'he', 'believed', 'the', 'cell', 'phones', 'would', 'need', 'to', 'be', 'sent',
→˓ 'to', 'the', 'Criminal', 'Research', 'Institute', 'in', 'Rosny', 'sous', '-', 'Bois',
→˓',', 'near', 'Paris', ',', 'in', 'order', 'to', 'be', 'analyzed', 'by', 'specialized',
→˓'technicians', 'working', 'hand', '-', 'in', '-', 'hand', 'with', 'investigators', '.
→˓'], ['But', 'none', 'of', 'the', 'cell', 'phones', 'found', 'so', 'far', 'have', 'been
→˓', 'sent', 'to', 'the', 'institute', ',', 'Menichini', 'said', '.'], ['Asked', 'whether
→˓', 'staff', 'involved', 'in', 'the', 'search', 'could', 'have', 'leaked', 'a', 'memory
→˓', 'card', 'to', 'the', 'media', ',', 'Menichini', 'answered', 'with', 'a',
→˓'categorical', '"', 'no', '.', '"'], ['Reichelt', 'told', '"', 'Erin', 'Burnett', ':'],
→˓ ['Outfront', '"', 'that', 'he', 'had', 'watched', 'the', 'video', 'and', 'stood', 'by
→˓', 'the', 'report', ',', 'saying', 'Bild', 'and', 'Paris', 'Match', 'are', '"', 'very',
→˓ 'confident', '"', 'that', 'the', 'clip', 'is', 'real', '.'], ['He', 'noted', 'that',
→˓'investigators', 'only', 'revealed', 'they', "'d", 'recovered', 'cell', 'phones', 'from
→˓', 'the', 'crash', 'site', 'after', 'Bild', 'and', 'Paris', 'Match', 'published',
→˓'their', 'reports', '.'], ['"', 'That', 'is', 'something', 'we', 'did', 'not', 'know',
→˓'before', '.', '...'], ['Overall', 'we', 'can', 'say', 'many', 'things', 'of', 'the',
→˓'investigation', 'were', "n't", 'revealed', 'by', 'the', 'investigation', 'at', 'the',
→˓'beginning', ',', '"', 'he', 'said', '.'], ['German', 'airline', 'Lufthansa',
→˓'confirmed', 'Tuesday', 'that', 'co', '-', 'pilot', 'Andreas', 'Lubitz', 'had',
→˓'battled', 'depression', 'years', 'before', 'he', 'took', 'the', 'controls', 'of',
→˓'Germanwings', 'Flight', '9525', ',', 'which', 'he', "'s", 'accused', 'of',
→˓'deliberately', 'crashing', 'last', 'week', 'in', 'the', 'French', 'Alps', '.'], [
→˓'Lubitz', 'told', 'his', 'Lufthansa', 'flight', 'training', 'school', 'in', '2009',
→˓'that', 'he', 'had', 'a', '"', 'previous', 'episode', 'of', 'severe', 'depression', ',
→˓', '"', 'the', 'airline', 'said', 'Tuesday', '.'], ['Email', 'correspondence', 'between
→˓', 'Lubitz', 'and', 'the', 'school', 'discovered', 'in', 'an', 'internal',
→˓'investigation', ',', 'Lufthansa', 'said', ',', 'included', 'medical', 'documents', 'he
→˓', 'submitted', 'in', 'connection', 'with', 'resuming', 'his', 'flight', 'training', '.
→˓'], ['The', 'announcement', 'indicates', 'that', 'Lufthansa', ',', 'the', 'parent',
→˓'company', 'of', 'Germanwings', ',', 'knew', 'of', 'Lubitz', "'s", 'battle', 'with',
→˓'depression', ',', 'allowed', 'him', 'to', 'continue', 'training', 'and', 'ultimately',
→˓ 'put', 'him', 'in', 'the', 'cockpit', '.'], ['Lufthansa', ',', 'whose', 'CEO',
→˓'Carsten', 'Spohr', 'previously', 'said', 'Lubitz', 'was', '100', '%', 'fit', 'to',
→˓'fly', ',', 'described', 'its', 'statement', 'Tuesday', 'as', 'a', '"', 'swift', 'and',
→˓ 'seamless', 'clarification', '"', 'and', 'said', 'it', 'was', 'sharing', 'the',
→˓'information', 'and', 'documents', '--', 'including', 'training', 'and', 'medical',
→˓'records', '--', 'with', 'public', 'prosecutors', '.'], ['Spohr', 'traveled', 'to',
→˓'the', 'crash', 'site', 'Wednesday', ',', 'where', 'recovery', 'teams', 'have', 'been',
→˓ 'working', 'for', 'the', 'past', 'week', 'to', 'recover', 'human', 'remains', 'and',
→˓'plane', 'debris', 'scattered', 'across', 'a', 'steep', 'mountainside', '.'], ['He',
→˓'saw', 'the', 'crisis', 'center', 'set', 'up', 'in', 'Seyne', '-', 'les', '-', 'Alpes',
→˓ ',', 'laid', 'a', 'wreath', 'in', 'the', 'village', 'of', 'Le', 'Vernet', ',', 'closer
→˓', 'to', 'the', 'crash', 'site', ',', 'where', 'grieving', 'families', 'have', 'left',
→˓'flowers', 'at', 'a', 'simple', 'stone', 'memorial', '.'], ['Menichini', 'told', 'CNN',
→˓ 'late', 'Tuesday', 'that', 'no', 'visible', 'human', 'remains', 'were', 'left', 'at',
→˓'the', 'site', 'but', 'recovery', 'teams', 'would', 'keep', 'searching', '.'], ['French
→˓', 'President', 'Francois', 'Hollande', ',', 'speaking', 'Tuesday', ',', 'said', 'that
→˓', 'it', 'should', 'be', 'possible', 'to', 'identify', 'all', 'the', 'victims', 'using
→˓', 'DNA', 'analysis', 'by', 'the', 'end', 'of', 'the', 'week', ',', 'sooner', 'than',
→˓'authorities', 'had', 'previously', 'suggested', '.'], ['In', 'the', 'meantime', ',',
→˓'the', 'recovery', 'of', 'the', 'victims', "'", 'personal', 'belongings', 'will',
→˓'start', 'Wednesday', ',', 'Menichini', 'said', '.'], ['Among', 'those', 'personal',
→˓'belongings', 'could', 'be', 'more', 'cell', 'phones', 'belonging', 'to', 'the', '144',
→˓ 'passengers', 'and', 'six', 'crew', 'on', 'board', '.'], ['Check', 'out', 'the',
→˓'latest', 'from', 'our', 'correspondents', '.'], ['The', 'details', 'about', 'Lubitz',
→˓"'s", 'correspondence', 'with', 'the', 'flight', 'school', 'during', 'his', 'training',
→˓ 'were', 'among', 'several', 'developments', 'as', 'investigators', 'continued', 'to',
→˓'delve', 'into', 'what', 'caused', 'the', 'crash', 'and', 'Lubitz', "'s", 'possible',
→˓'motive', 'for', 'downing', 'the', 'jet', '.'], ['A', 'Lufthansa', 'spokesperson',
→˓'told', 'CNN', 'on', 'Tuesday', 'that', 'Lubitz', 'had', 'a', 'valid', 'medical',
→˓'certificate', ',', 'had', 'passed', 'all', 'his', 'examinations', 'and', '"', 'held',
→˓'all', 'the', 'licenses', 'required', '.', '"'], ['Earlier', ',', 'a', 'spokesman',
→˓'for', 'the', 'prosecutor', "'s", 'office', 'in', 'Dusseldorf', ',', 'Christoph',
→˓'Kumpa', ',', 'said', 'medical', 'records', 'reveal'], ['Lubitz', 'suffered', 'from',
→˓'suicidal', 'tendencies', 'at', 'some', 'point', 'before', 'his', 'aviation', 'career',
→˓ 'and', 'underwent', 'psychotherapy', 'before', 'he', 'got', 'his', 'pilot', "'s",
→˓'license', '.'], ['Kumpa', 'emphasized', 'there', "'s", 'no', 'evidence', 'suggesting',
→˓ 'Lubitz', 'was', 'suicidal', 'or', 'acting', 'aggressively', 'before', 'the', 'crash',
→˓ '.'], ['Investigators', 'are', 'looking', 'into', 'whether', 'Lubitz', 'feared', 'his
→˓', 'medical', 'condition', 'would', 'cause', 'him', 'to', 'lose', 'his', 'pilot', "'s",
→˓ 'license', ',', 'a', 'European', 'government', 'official', 'briefed', 'on', 'the',
→˓'investigation', 'told', 'CNN', 'on', 'Tuesday', '.'], ['While', 'flying', 'was', '"',
→˓'a', 'big', 'part', 'of', 'his', 'life'], [',', '"', 'the', 'source', 'said', ',', 'it
→˓', "'s", 'only', 'one', 'theory', 'being', 'considered', '.'], ['Another', 'source', ',
→˓', 'a', 'law', 'enforcement', 'official', 'briefed', 'on', 'the', 'investigation', ',',
→˓ 'also', 'told', 'CNN', 'that', 'authorities', 'believe', 'the', 'primary', 'motive',
→˓'for', 'Lubitz', 'to', 'bring', 'down', 'the', 'plane', 'was', 'that', 'he', 'feared',
→˓'he', 'would', 'not', 'be', 'allowed', 'to', 'fly', 'because', 'of', 'his', 'medical',
→˓'problems', '.'], ['Lubitz', "'s", 'girlfriend', 'told', 'investigators', 'he', 'had',
→˓'seen', 'an', 'eye', 'doctor', 'and', 'a', 'neuropsychologist', ',', 'both', 'of',
→˓'whom', 'deemed', 'him', 'unfit', 'to', 'work', 'recently', 'and', 'concluded', 'he',
→˓'had', 'psychological', 'issues', ',', 'the', 'European', 'government', 'official',
→˓'said', '.'], ['But', 'no', 'matter', 'what', 'details', 'emerge', 'about', 'his',
→˓'previous', 'mental', 'health', 'struggles', ',', 'there', "'s", 'more', 'to', 'the',
→˓'story', ',', 'said', 'Brian', 'Russell', ',', 'a', 'forensic', 'psychologist', '.'], [
→˓'"', 'Psychology', 'can', 'explain', 'why', 'somebody', 'would', 'turn', 'rage',
→˓'inward', 'on', 'themselves', 'about', 'the', 'fact', 'that', 'maybe', 'they', 'were',
→˓"n't", 'going', 'to', 'keep', 'doing', 'their', 'job', 'and', 'they', "'re", 'upset',
→˓'about', 'that'], ['and', 'so', 'they', "'re", 'suicidal', ',', '"', 'he', 'said', '.
→˓'], ['"', 'But', 'there', 'is', 'no', 'mental', 'illness', 'that', 'explains', 'why',
→˓'somebody', 'then', 'feels', 'entitled', 'to', 'also', 'take', 'that', 'rage', 'and',
→˓'turn', 'it', 'outward', 'on', '149', 'other', 'people', 'who', 'had', 'nothing', 'to',
→˓ 'do', 'with', 'the', 'person', "'s", 'problems', '.', '"'], ['Who', 'was', 'the',
→˓'captain', 'of', 'Germanwings', 'Flight', '9525', '?'], ['CNN', "'s", 'Margot', 'Haddad
→˓', 'reported', 'from', 'Marseille', 'and', 'Pamela', 'Brown', 'from', 'Dusseldorf', ',
→˓', 'while', 'Laura', 'Smith', '-', 'Spark', 'wrote', 'from', 'London', '.'], ['CNN', "
→˓'s", 'Frederik', 'Pleitgen', ',', 'Pamela', 'Boykoff', ',', 'Antonia', 'Mortensen', ',
→˓', 'Sandrine', 'Amiel', 'and', 'Anna', '-', 'Maja', 'Rappard', 'contributed', 'to',
→˓'this', 'report', '.']], 'labels': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,␣
→˓0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,␣
→˓0, 0, 0, 0, 0, 0], 'tgt': 'Marseille prosecutor says " so far no videos were used in␣
→˓the crash investigation " despite media reports .<q>Journalists at Bild and Paris␣
→˓Match are " very confident " the video clip is real , an editor says .<q>Andreas␣
→˓Lubitz had informed his Lufthansa training school of an episode of severe depression ,␣
→˓airline says .'}

(continues on next page)
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8.6 Script Help

usage: convert_to_extractive.py [-h] [--base_output_path BASE_OUTPUT_PATH]
[--split_names {train,val,test} [{train,val,test} ...]]
[--add_target_to {train,val,test} [{train,val,test} ...]]
[--source_ext SOURCE_EXT] [--target_ext TARGET_EXT]
[--oracle_mode {greedy,combination}]
[--shard_interval SHARD_INTERVAL]
[--n_process N_PROCESS] [--batch_size BATCH_SIZE]
[--compression] [--resume]
[--tokenizer_log_interval TOKENIZER_LOG_INTERVAL]
[--sentencizer] [--no_preprocess]
[--min_sentence_ntokens MIN_SENTENCE_NTOKENS]
[--max_sentence_ntokens MAX_SENTENCE_NTOKENS]
[--min_example_nsents MIN_EXAMPLE_NSENTS]
[--max_example_nsents MAX_EXAMPLE_NSENTS]
[-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
DIR

Convert an Abstractive Summarization Dataset to the Extractive Task

positional arguments:
DIR path to data directory

optional arguments:
-h, --help show this help message and exit
--base_output_path BASE_OUTPUT_PATH

path to output processed data (default is `base_path`)
--split_names {train,val,test} [{train,val,test} ...]

which splits of dataset to process
--add_target_to {train,val,test} [{train,val,test} ...]

add the abstractive target to these splits (useful for
calculating rouge scores)

--source_ext SOURCE_EXT
extension of source files

--target_ext TARGET_EXT
extension of target files

--oracle_mode {greedy,combination}
method to convert abstractive summaries to extractive
summaries

--shard_interval SHARD_INTERVAL
how many examples to include in each shard of the dataset
(default: no shards)

--n_process N_PROCESS
number of processes for multithreading

--batch_size BATCH_SIZE
number of batches for tokenization

--compression use gzip compression when saving data
(continues on next page)
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--resume resume from last shard
--tokenizer_log_interval TOKENIZER_LOG_INTERVAL

minimum progress display update interval [default: 0.1]
seconds

--sentencizer use a spacy sentencizer instead of a statistical model for
sentence detection (much faster but less accurate); see
https://spacy.io/api/sentencizer

--no_preprocess do not run the preprocess function, which removes sentences
that are too long/short and examples that have too few/many
sentences

--min_sentence_ntokens MIN_SENTENCE_NTOKENS
minimum number of tokens per sentence

--max_sentence_ntokens MAX_SENTENCE_NTOKENS
maximum number of tokens per sentence

--min_example_nsents MIN_EXAMPLE_NSENTS
minimum number of sentences per example

--max_example_nsents MAX_EXAMPLE_NSENTS
maximum number of sentences per example

-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --log {DEBUG,INFO,WARNING,ERROR,CRITICAL}
Set the logging level (default: 'Info').
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CHAPTER

NINE

AUTOMATIC PREPROCESSING

While the convert_to_extractive.py script prepares a dataset for the extractive task, the data still needs to be
processed for usage with a machine learning model. This preprocessing depends on the chosen model, and thus is
implemented in the extractive.py file with the rest of the model training logic.

The actual ExtractiveSummarizer LightningModule (which is similar to an nn.Module but with a built-in training
loop, more info at the pytorch_lightning documentation) implements a prepare_data() function. This function is
automatically called by pytorch_lightning to load and process the examples.

Note: Memory Usage Note: If sharding was turned off during the convert_to_extractive pro-
cess then prepare_data() will run once, loading the entire dataset into memory to process just like the
convert_to_extractive.py script.

There is a --only_preprocess argument available to only run the pre-process step and exit the script after all the
examples have been written to disk. This option will force data to be preprocessed, even if it was already computed
and is detected on disk, and any previous processed files will be overwritten.

Thus, to only pre-process data for use when training a model run:

python main.py --data_path ./datasets/cnn_dailymail_processor/cnn_dm --use_logger␣
→˓tensorboard --model_name_or_path bert-base-uncased --model_type bert --do_train --only_
→˓preprocess

Warning: If processed files are detected, they will automatically be loaded from disk. This includes any files that
follow the pattern [dataset_split_name].*.pt, where * is any text of any length.
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CHAPTER

TEN

TRAINING AN EXTRACTIVE SUMMARIZATION MODEL

10.1 Details

Once the dataset has been converted to the extractive task, it can be used as input to a data.SentencesProcessor,
which has a add_examples() function to add sets of (example, labels) and a get_features() function
that processes the data and prepares it to be inputted into the model (input_ids, attention_masks, labels,
token_type_ids, sent_rep_token_ids, sent_rep_token_ids_masks). Feature extraction runs in parallel and
tokenizes text using the tokenizer appropriate for the model specified with --model_name_or_path. The tokenizer
can be changed to another huggingface/transformers tokenizer with the --tokenizer_name option.

Important: When loading a pre-trained model you may encounter this common error:

RuntimeError: Error(s) in loading state_dict for ExtractiveSummarizer:
Missing key(s) in state_dict: "word_embedding_model.embeddings.position_ids".

To solve this issue, set strict=False like so: model = ExtractiveSummarizer.
load_from_checkpoint("distilroberta-base-ext-sum.ckpt", strict=False). If you are using the
main.py script, then you can alternatively sepcify the --no_strict option.

For the CNN/DM dataset, to train a model for 50,000 steps on the data run:

python main.py --data_path ./datasets/cnn_dailymail_processor/cnn_dm --weights_save_path␣
→˓./trained_models --do_train --max_steps 50000

• The --do_train argument runs the training process. Set –do_test to test after training.

• The --data_path argument specifies where the extractive dataset json file are located.

• The –weights_save_path argument specifies where the model weights should be stored.

If you prefer to measure training progress by epochs instead of steps, you can use the --max_epochs and
--min_epochs options.

The batch size can be changed with the --batch_size option. This changes the batch size for training, validation,
and testing. You can set the --auto_scale_batch_size option to automatically determine this value. See “Auto
scaling of batch size” from the pytorch_lightning documentation for more information about the algorithm and available
options.

If the extractive dataset json files are compressed using gzip, then they will be automatically decompressed during the
data preprocessing step of training.

By default, the model weights are saved after every epoch to the --default_root_dir. The logs are also saved to this
folder. You can change the weight save path (separate folder for logs and weights) with the --weights_save_path
option.
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The length of output summaries during testing is 3 by default. You can change this by setting the --test_k option to
the number of sentences desired in generated summaries. This assumes --test_id_method is set to top_k, which
is the default. top_k selects the top k sentences and the other option, greater_k, selects those sentences with a rank
above k. k is specified by the --test_k argument.

Important: More example training commands can be found on the TransformerSum Weights & Biases page. Just
click the name of a training run, go to the overview page by clicking the “i” icon in the top left, and look at the command
value.

10.2 Pooling Modes

The pooling model determines how word vectors should be converted to sentence embeddings. The implementation
can be found in pooling.py. The --pooling_mode argument can be set to either sent_rep_tokens or mean_tokens.
While the pooling nn.Module allows multiple methods to be used at once (it will concatenate and return the results),
the training script does not.

• sent_rep_tokens: Uses the sentence representation token (commonly called the classification token; [CLS]
in BERT and <s> in RoBERTa) vectors as sentence embeddings.

• mean_tokens: Uses the average of the token vectors for each sentence in the input as sentence embeddings.

• max_tokens: Uses the maximum of the token vectors for each sentence in the input as sentence embeddings.

10.3 Custom Models

You can use any autoencoding transformer model for the word embedding model (by setting the
--model_name_or_path CLI argument) as long as it was saved in the huggingface/transformers format.
Any model that is loaded with this option by specifying a path is considered “custom” in this project. Currently, there
are no “custom” models that are “officially” supported. The longformer used to be a custom model, but it was since
added to the huggingface/transformers repository, and thus can be used in this project just like any other model.

10.4 Script Help

Output of python main.py --mode extractive --help (generic options removed):

usage: main.py [-h]
[--model_name_or_path MODEL_NAME_OR_PATH] [--model_type MODEL_TYPE]
[--tokenizer_name TOKENIZER_NAME] [--tokenizer_no_use_fast]
[--max_seq_length MAX_SEQ_LENGTH] [--data_path DATA_PATH]
[--data_type {txt,pt,none}] [--num_threads NUM_THREADS]
[--processing_num_threads PROCESSING_NUM_THREADS]
[--pooling_mode {sent_rep_tokens,mean_tokens,max_tokens}]
[--num_frozen_steps NUM_FROZEN_STEPS] [--batch_size BATCH_SIZE]
[--dataloader_type {map,iterable}]
[--dataloader_num_workers DATALOADER_NUM_WORKERS]
[--processor_no_bert_compatible_cls] [--only_preprocess]
[--preprocess_resume] [--create_token_type_ids {binary,sequential}]
[--no_use_token_type_ids]

(continues on next page)

44 Chapter 10. Training an Extractive Summarization Model

https://app.wandb.ai/hhousen/transformerextsum
https://huggingface.co/transformers/model_summary.html#autoencoding-models


TransformerSum, Release 1.0.0

(continued from previous page)

[--classifier {linear,simple_linear,transformer,transformer_linear}]
[--classifier_dropout CLASSIFIER_DROPOUT]
[--classifier_transformer_num_layers CLASSIFIER_TRANSFORMER_NUM_LAYERS]
[--train_name TRAIN_NAME] [--val_name VAL_NAME]
[--test_name TEST_NAME] [--test_id_method {greater_k,top_k}]
[--test_k TEST_K] [--no_test_block_trigrams] [--test_use_pyrouge]
[--loss_key {loss_total,loss_total_norm_batch,loss_avg_seq_sum,loss_avg_seq_

→˓mean,loss_avg}]

optional arguments:
-h, --help show this help message and exit
--model_name_or_path MODEL_NAME_OR_PATH

Path to pre-trained model or shortcut name. A list of
shortcut names can be found at https://huggingface.co/tran
sformers/pretrained_models.html. Community-uploaded models
are located at https://huggingface.co/models.

--model_type MODEL_TYPE
Model type selected in the list: retribert, t5,
distilbert, albert, camembert, xlm-roberta, bart,
longformer, roberta, bert, openai-gpt, gpt2, mobilebert,
transfo-xl, xlnet, flaubert, xlm, ctrl, electra, reformer

--tokenizer_name TOKENIZER_NAME
--tokenizer_no_use_fast

Don't use the fast version of the tokenizer for the
specified model. More info: https://huggingface.co/transfo
rmers/main_classes/tokenizer.html.

--max_seq_length MAX_SEQ_LENGTH
The maximum sequence length of processed documents.

--data_path DATA_PATH
Directory containing the dataset.

--data_type {txt,pt,none}
The file extension of the prepared data. The 'map'
`--dataloader_type` requires `txt` and the 'iterable'
`--dataloader_type` works with both. If the data is not
prepared yet (in JSON format) this value specifies the
output format after processing. If the data is prepared,
this value specifies the format to load. If it is `none`
then the type of data to be loaded will be inferred from
the `data_path`. If data needs to be prepared, this cannot
be set to `none`.

--num_threads NUM_THREADS
--processing_num_threads PROCESSING_NUM_THREADS
--pooling_mode {sent_rep_tokens,mean_tokens,max_tokens}

How word vectors should be converted to sentence
embeddings.

--num_frozen_steps NUM_FROZEN_STEPS
Freeze (don't train) the word embedding model for this
many steps.

--batch_size BATCH_SIZE
Batch size per GPU/CPU for training/evaluation/testing.

--dataloader_type {map,iterable}
The style of dataloader to use. `map` is faster and uses

(continues on next page)
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less memory.
--dataloader_num_workers DATALOADER_NUM_WORKERS

The number of workers to use when loading data. A general
place to start is to set num_workers equal to the number
of CPU cores on your machine. If `--dataloader_type` is
'iterable' then this setting has no effect and num_workers
will be 1. More details here: https://pytorch-
lightning.readthedocs.io/en/latest/performance.html#num-
workers

--processor_no_bert_compatible_cls
If model uses bert compatible [CLS] tokens for sentence
representations.

--only_preprocess Only preprocess and write the data to disk. Don't train
model. This will force data to be preprocessed, even if it
was already computed and is detected on disk, and any
previous processed files will be overwritten.

--preprocess_resume Resume preprocessing. `--only_preprocess` must be set in
order to resume. Determines which files to process by
finding the shards that do not have a coresponding ".pt"
file in the data directory.

--create_token_type_ids {binary,sequential}
Create token type ids during preprocessing.

--no_use_token_type_ids
Set to not train with `token_type_ids` (don't pass them
into the model).

--classifier {linear,simple_linear,transformer,transformer_linear}
Which classifier/encoder to use to reduce the hidden
dimension of the sentence vectors. `linear` - a
`LinearClassifier` with two linear layers, dropout, and an
activation function. `simple_linear` - a
`LinearClassifier` with one linear layer and a sigmoid.
`transformer` - a `TransformerEncoderClassifier` which
runs the sentence vectors through some
`nn.TransformerEncoderLayer`s and then a simple
`nn.Linear` layer. `transformer_linear` - a
`TransformerEncoderClassifier` with a `LinearClassifier`
as the `reduction` parameter, which results in the same
thing as the `transformer` option but with a
`LinearClassifier` instead of a `nn.Linear` layer.

--classifier_dropout CLASSIFIER_DROPOUT
The value for the dropout layers in the classifier.

--classifier_transformer_num_layers CLASSIFIER_TRANSFORMER_NUM_LAYERS
The number of layers for the `transformer` classifier.
Only has an effect if `--classifier` contains
"transformer".

--train_name TRAIN_NAME
name for set of training files on disk (for loading and
saving)

--val_name VAL_NAME name for set of validation files on disk (for loading and
saving)

--test_name TEST_NAME
name for set of testing files on disk (for loading and

(continues on next page)
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saving)
--test_id_method {greater_k,top_k}

How to chose the top predictions from the model for ROUGE
scores.

--test_k TEST_K The `k` parameter for the `--test_id_method`. Must be set
if using the `greater_k` option. (default: 3)

--no_test_block_trigrams
Disable trigram blocking when calculating ROUGE scores
during testing. This will increase repetition and thus
decrease accuracy.

--test_use_pyrouge Use `pyrouge`, which is an interface to the official ROUGE
software, instead of the pure-python implementation
provided by `rouge-score`. You must have the real ROUGE
package installed. More details about ROUGE 1.5.5 here: ht
tps://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-
1.5.5. It is recommended to use this option for official
scores. The `ROUGE-L` measurements from `pyrouge` are
equivalent to the `rougeLsum` measurements from the
default `rouge-score` package.

--loss_key {loss_total,loss_total_norm_batch,loss_avg_seq_sum,loss_avg_seq_mean,loss_avg}
Which reduction method to use with BCELoss. See the
`experiments/loss_functions/` folder for info on how the
default (`loss_avg_seq_mean`) was chosen.
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CHAPTER

ELEVEN

EXPERIMENTS

Interactive charts, graphs, raw data, run commands, hyperparameter choices, and more for all experiments are publicly
available on the TransformerSum Weights & Biases page. You can download the raw data for each model on this site,
or download an overview as a CSV. Please open an issue if you have questions about these experiments.

Important notes when running experiments:

• If you are using --overfit_batches, then overfit_batches percent of the testing data is being used as
well as overfit_batches percent of the training data. Due to the way pytorch_lightning was written, it is
necessary to use the same batch_size when using overfit_batches in order to get the exact same results. I
currently am not sure why this is the case but removing overfit_batches and using different batch_sizes
produces identical results. Open an issue or submit a pull request if you know why.

• Have another note that should be stated here? Open an issue. All contributions are very helpful.

The Version 1 were conducted on a previous version of TransformerSum that contained bugs. Thus, the scores and
graphs of the older experiments don’t represent model performance but their results relative to each other should still
be accurate. The Version 2 were conducted on a new version without bugs and thus should be easily reproducible.

11.1 Version 3

All version 3 extractive models were trained for three epochs with gradient accumulation every two steps. The AdamW
optimizer was used with 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 1e−8. Models were trained on one NVIDIA Tesla P100 GPU.
Unless otherwise specified, the learning rate was 2e-5 and a linear warmup with decay learning rate scheduler was used
with 1400 steps of warmup (technically 2800 steps due to gradient accumulation every two steps). Except during their
respective experiments, the simple_linear classifier and sent_rep_tokens pooling method are used. Gradients
are clipped at 1.0 during training for all models. Model checkpoints were saved and evaluated on the validation set at
the end of each epoch. ROUGE scores are reported on the test set of the model checkpoint saved after the final epoch.

11.1.1 Pooling Mode

Wandb Tag: pooling-mode-test-v3

All three pooling modes (mean_tokens, sentence_rep_tokens, and max_tokens) were tested using DistilBERT
and DistilRoBERTa, which are warm started from the distilbert-base-uncased and distilroberta-base
checkpoints, respectively. I only test the distil* models since they reach at least 95% of the performance of the
original model while being significantly faster to train. The models were trained and tested on CNN/DailyMail, Wiki-
How, and ArXiv/PubMed to determine if certain methods worked better with certain topics. All models were trained
with a batch size of 32 and the hyperparameters discussed in above at Version 3.
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Pooling Mode Results

ROUGE Scores:

Model Pooling Method CNN/DM WikiHow ArXiv/PubMed
distilbert-base-uncased sent_rep 42.71/19.91/39.18 30.69/08.65/28.58 34.93/12.21/31.00

mean 42.70/19.88/39.16 30.48/08.56/28.42 34.48/11.89/30.61
max 42.74/19.90/39.17 30.51/08.62/28.43 34.50/11.91/30.62

distilroberta-base sent_rep 42.87/20.02/39.31 31.07/08.96/28.95 34.70/12.16/30.82
mean 43.00/20.08/39.42 30.96/08.93/28.86 34.24/11.82/30.42
max 42.91/20.04/39.33 30.93/08.92/28.82 34.28/11.82/30.44

Main Takeaway: Across all datasets and models, the pooling mode has no significant impact on the final ROUGE
scores. However, the sent_rep method usually performs slightly better. Additionally, the mean and max methods are
about 30% slower than the sent_rep pooling method.

11.1.2 Classifier/Encoder

Wandb Tag: encoder-test-v3

All four summarization layers, including two variations of the verb|transformer| method for a total of five configurations,
were tested using the same models and datasets from the pooling modes experiment. For this experiment, a batch size
of 32 was used.

Classifier/Encoder Results

ROUGE Scores:

Model Classifier CNN/DM WikiHow ArXiv/PubMed
distilbert-base-uncased simple_linear 42.71/19.91/39.18 30.69/08.65/28.58 34.93/12.21/31.00

linear 42.70/19.84/39.14 30.67/08.62/28.56 34.87/12.20/30.96
transformer 42.78/19.93/39.22 30.66/08.69/28.57 34.94/12.22/31.03
transformer_linear 42.78/19.93/39.22 30.64/08.64/28.54 34.97/12.22/31.02

distilroberta-base simple_linear 42.87/20.02/39.31 31.07/08.96/28.95 34.70/12.16/30.82
linear 43.18/20.26/39.61 31.08/08.98/28.96 34.77/12.17/30.88
transformer 42.94/20.03/39.37 31.05/08.97/28.93 34.77/12.17/30.87
transformer_linear 42.90/20.00/39.34 31.13/09.01/29.02 34.77/12.18/30.88

Main Takeaway: There is no significant difference between the classifier used. Thus, you should use the linear classifier
by default since it contains fewer parameters.

11.2 Version 2

11.2.1 Classifier/Encoder simple_linear vs linear

Commit dfefd15 added a SimpleLinearClassifier. This experiment servers to determine if simple_linear
(SimpleLinearClassifier) is better than linear (LinearClassifier).

Command used to run the tests:
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python main.py \
--model_name_or_path distilbert-base-uncased \
--model_type distilbert \
--no_use_token_type_ids \
--use_custom_checkpoint_callback \
--data_path ./pt/bert-base-uncased \
--max_epochs 3 \
--accumulate_grad_batches 2 \
--warmup_steps 1400 \
--gradient_clip_val 1.0 \
--optimizer_type adamw \
--use_scheduler linear \
--do_train --do_test \
--batch_size 32 \
--classifier [`linear` or `simple_linear`]

Classifier/Encoder Results

Training Times and Model Sizes:

Model Key Time Model Size
linear 6h 28m 21s 810.6MB
simple_linear 6h 22m 32s 796.4MB

ROUGE Scores:

Name ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-Sum
linear 42.8 19.9 27.5 39.2
simple_linear 42.7 19.9 27.5 39.2

Main Takeaway: There is no significant difference in performance between the linear and simple_linear classi-
fiers/encoders. However, simple_linear is better due to its lower training and validation loss.

Outliers Included:
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No Outliers:
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11.3 Version 1

Important: These experiments may be difficult to reproduce because they were conducted on an early version of the
project that contained several bugs.

Reproducibility Notes:

Bugs present in the version these experiments were conducted with:

1. Sentences were not split properly when computing ROUGE scores (fixed in commit dfefd15).

2. Data was missing from the training, validation, and testing sets (fixed in commit 4de5532).

3. Tokens were not converted to lowercase for models with the word “uncased” in their name (fixed in commit
d934e09).

4. rougeLsum is not reported. See Extractive vs Abstractive Summarization for the difference between rougeL and
rougeLsum (fixed in commit d934e09).

5. Trigram blocking was not used (fixed in commit 60f868e).

Despite these differences from the official models, the relative results of these experiments should hold true, so their
general findings should remain constant with newer models. If you find conflicting results please open an issue.
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11.3.1 Loss Functions

The loss function implementation can be found in the extractive.ExtractiveSummarizer.compute_loss()
function. The function uses nn.BCELoss with reduction="none" and then applies 5 different reduction techniques.
Special reduction methods were needed to ignore padding and operate on the multi-class-per-document approach (each
input is assigned more than one of the same class) that this research uses to perform extractive summarization. See
the comments throughout the function for more information. The five different reduction methods were tested with the
distilbert-base-uncased word embedding model and the pooling_mode set to sent_rep_tokens. Training
time is just under 4 hours on a Tesla P100 (3h52m average).

The --loss_key argument specifies the reduction method to use. It can be one of the following: loss_total,
loss_total_norm_batch, loss_avg_seq_sum, loss_avg_seq_mean, loss_avg.

Full command used to run the tests:

python main.py \
--model_name_or_path distilbert-base-uncased \
--no_use_token_type_ids \
--pooling_mode sent_rep_tokens \
--data_path ./cnn_dm_pt/bert-base-uncased \
--max_epochs 3 \
--accumulate_grad_batches 2 \
--warmup_steps 1800 \
--overfit_batches 0.6 \
--gradient_clip_val 1.0 \
--optimizer_type adamw \
--use_scheduler linear \
--profiler \
--do_train --do_test \
--loss_key [Loss Key Here] \
--batch_size 32

Loss Functions Results

Graph Legend Description: The loss-test label (the first part) is the experiment, which indicates the loss reduction
method that was tested. The second part of each key is the graphed quantity. For example, the first line of the key for
the first graph in the Outliers Included section below indicates that loss_avg was tested and that its results as
measured by the loss_avg_seq_mean reduction method are shown in brown. The train results are solid brown and
the validation results are dotted brown.

Outliers Included:
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No Outliers:
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The CSV files the were used to generate the above graphs can be found in experiments/loss_functions.

Based on the results, loss_avg_seq_mean was chosen as the default.

11.3.2 Word Embedding Models

Different transformer models of various architectures and sizes were tested.

Tested Models:

Model Type Model Key Batch Size
Distil* distilbert-base-uncased, distilroberta-base 16
Base bert-base-uncased, roberta-base, albert-base-v2 16
Large bert-large-uncased, roberta-large, albert-xlarge-v2 4

Albert Info: The above batch sizes are true except for albert models, which have special batch sizes due to the
increased memory needed to train them*. ``albert-base-v2`` was trained with a batch size of ``12`` and ``albert-
xlarge-v2`` with a batch size of ``2``.

Model Parameters Layers Hidden Heads Embedding Parameter-sharing
BERT-base 110M 12 768 12 768 False
BERT-large 340M 24 1024 16 1024 False
ALBERT-base 12M 12 768 12 128 True
ALBERT-large 18M 24 1024 16 128 True
ALBERT-xlarge 59M 24 2048 32 128 True
ALBERT-xxlarge 233M 12 4096 64 128 True

*The huggingface/transformers documentation says “ALBERT uses repeating layers which results in a small memory
footprint.” This may be true but I found that the normal batch sizes I used for the base and large models would crash the
training script when albert models were used. Thus, the batch sizes were decreased. The advantage that of albert
that I found was incredibly small model weight checkpoint files (see results below for sizes).
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All models were trained for 3 epochs (except albert-xlarge-v2) (which will result in different numbers of steps
but will ensure that each model saw the same amount of information), using the AdamW optimizer with a lin-
ear scheduler with 1800 steps of warmup. Gradients were accumulated every 2 batches and clipped at 1.0. Only
60% of the data was used (to decrease training time, but also will provide similar results if all the data was used).
--no_use_token_type_ids was set if the model was not compatible with token type ids.

Full command used to run the tests:

python main.py \
--model_name_or_path [Model Name] \
--model_type [Model Type] \
--pooling_mode sent_rep_tokens \
--data_path ./cnn_dm_pt/[Model Type]-base \
--max_epochs 3 \
--accumulate_grad_batches 2 \
--warmup_steps 1800 \
--overfit_batches 0.6 \
--gradient_clip_val 1.0 \
--optimizer_type adamw \
--use_scheduler linear \
--profiler \
--do_train --do_test \
--batch_size [Batch Size]

WEB Results

The CSV files the were used to generate the below graphs can be found in experiments/web.

All ROUGE Scores are test set results on the CNN/DailyMail dataset using ROUGE F1.

All model sizes are not compressed. They are the raw .ckpt output file sizes of the best performing epoch by val_loss.

Final (Combined) Results

The loss_total, loss_avg_seq_sum, and loss_total_norm_batch loss reduction techniques depend on the batch
size. That is, the larger the batch size, the larger these losses will be. The loss_avg_seq_mean and loss_avg do
not depend on the batch size since they are averages instead of totals. Therefore, only the non-batch-size-dependent
metrics were used for the final results because difference batch sizes were used.

Distil* Models

More information about distil* models found in the huggingface/transformers examples.

Warning: Distil* models do not accept token type ids. So set --no_use_token_type_ids while training using
the above command.

Training Times and Model Sizes:

Model Key Time Model Size
distilbert-base-uncased 4h 5m 30s 810.6MB
distilroberta-base 4h 12m 53s 995.0MB
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ROUGE Scores:

Name ROUGE-1 ROUGE-2 ROUGE-L
distilbert-base-uncased 40.1 18.1 26.0
distilroberta-base 40.9 18.7 26.4

Outliers Included:

No Outliers:
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Base Models

Warning: roberta-base does not accept token type ids. So set --no_use_token_type_ids while training
using the above command.

Training Times and Model Sizes:
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Model Key Time Model Size
bert-base-uncased 7h 56m 39s 1.3GB
roberta-base 7h 52m 0s 1.5GB
albert-base-v2 7h 32m 19s 149.7MB

ROUGE Scores:

Name ROUGE-1 ROUGE-2 ROUGE-L
bert-base-uncased 40.2 18.2 26.1
roberta-base 42.3 20.1 27.4
albert-base-v2 40.5 18.4 26.1

Outliers Included:

No Outliers:
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Relative Time:

This is included because the batch size for albert-base-v2 had to be lowered to 12 (from 16).
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Large Models

Warning: roberta-large does not accept token type ids. So set --no_use_token_type_ids while training
using the above command.

Important: albert-xlarge-v2 (batch size 2) was set to be trained with for 2 epochs instead of 3, but was stopped
early at global_step 56394.

Training Times and Model Sizes:

Model Key Time Model Size
bert-large-uncased 17h 55m 18s 4.0GB
roberta-large 18h 32m 28s 4.3GB
albert-xlarge-v2 21h 15m 54s 708.9MB

ROUGE Scores:

Name ROUGE-1 ROUGE-2 ROUGE-L
bert-large-uncased 41.5 19.3 27.0
roberta-large 41.5 19.3 27.0
albert-xlarge-v2 40.7 18.4 26.1

Outliers Included:
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No Outliers:
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Relative Time:

This is included because the batch size for albert-large-v2 had to be lowered to 2 (from 4).

11.3.3 Pooling Mode

See the main README.md for more information on what the pooling model is.

The two options, sent_rep_tokens and mean_tokens, were both tested with the bert-base-uncased and
distilbert-base-uncased word embedding models.

Full command used to run the tests:

python main.py \
--model_name_or_path [Model Name] \
--model_type [Model Type] \
--pooling_mode [`mean_tokens` or `sent_rep_tokens`] \
--data_path ./cnn_dm_pt/[Model Type]-base \
--max_epochs 3 \
--accumulate_grad_batches 2 \
--warmup_steps 1800 \
--overfit_batches 0.6 \
--gradient_clip_val 1.0 \
--optimizer_type adamw \

(continues on next page)
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(continued from previous page)

--use_scheduler linear \
--profiler \
--do_train --do_test \
--batch_size 16

Pooling Mode Results

Training Times and Model Sizes:

Model Key Time Model Size
distilbert-base-uncased mean_tokens 5h 18m 1s 810.6MB
distilbert-base-uncased sent_rep_tokens 4h 5m 30s 810.6MB
bert-base-uncased mean_tokens 8h 22m 46s 1.3GB
bert-base-uncased sent_rep_tokens 7h 56m 39s 1.3GB

ROUGE Scores:

Name ROUGE-1 ROUGE-2 ROUGE-L
distilbert-base-uncased mean_tokens 41.1 18.8 26.5
distilbert-base-uncased sent_rep_tokens 40.1 18.1 26.0
bert-base-uncased mean_tokens 40.7 18.7 26.6
bert-base-uncased sent_rep_tokens 40.2 18.2 26.1

Main Takeaway: Using the mean_tokens pooling_mode is associated with a 0.617 average ROUGE F1 score im-
provement over the sent_rep_tokens pooling_mode. This improvement is at the cost of a 49.3 average minute
(2959 seconds) increase in training time.

Outliers Included:

No Outliers:
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Relative Time:

11.3.4 Classifier/Encoder

The classifier/encoder is responsible for removing the hidden features from each sentence embedding and con-
verting them to a single number. The linear, transformer (with 2 layers), transformer (with 6 lay-
ers “--classifier_transformer_num_layers 6”), and transformer_linear options were tested with the
distilbert-base-uncased model. The transformer_linear test has a transformer with 2 layers (like the
transformer test).

Unlike the experiments prior to this one (above), the “Classifier/Encoder” experiment used a
--train_percent_check of 0.6, --val_percent_check of 0.6 and --test_percent_check of 1.0. All
of the data was used for testing whereas 60% of it was used for training and validation.

Full command used to run the tests:

python main.py \
--model_name_or_path [Model Name] \
--model_type distilbert \
--no_use_token_type_ids \
--classifier [`linear` or `transformer` or `transformer_linear`] \
[--classifier_transformer_num_layers 6 \]
--data_path ./cnn_dm_pt/bert-base-uncased \
--max_epochs 3 \
--accumulate_grad_batches 2 \
--warmup_steps 1800 \
--train_percent_check 0.6 --val_percent_check 0.6 --test_percent_check 1.0 \
--gradient_clip_val 1.0 \
--optimizer_type adamw \
--use_scheduler linear \
--profiler \
--do_train --do_test \
--batch_size 16
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Classifier/Encoder Results

Training Times and Model Sizes:

Model Key Time Model Size
linear 3h 59m 1s 810.6MB
transformer (2 layers) 4h 9m 29s 928.8MB
transformer (6 layers) 4h 21m 29s 1.2GB
transformer_linear 4h 9m 59s 943.0MB

ROUGE Scores:

Name ROUGE-1 ROUGE-2 ROUGE-L
linear 41.2 18.9 26.5
transformer (2 layers) 41.2 18.8 26.5
transformer (6 layers) 41.0 18.9 26.5
transformer_linear 40.9 18.7 26.6

Main Takeaway: The transformer encoder had a much better loss curve, indicating that it is able to learn more about
choosing the more representative sentences. However, its ROUGE scores are nearly identical to the linear encoder,
which suggests both encoders capture enough information to summarize. The transformer encoder may potentially
work better on more complex datasets.

Outliers Included:

No Outliers:
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Relative Time:
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CHAPTER

TWELVE

EXTRACTIVE API REFERENCE

12.1 Model/Module

class extractive.ExtractiveSummarizer(hparams, embedding_model_config=None, classifier_obj=None)
A machine learning model that extractively summarizes an input text by scoring the sentences. Main class that
handles the data loading, initial processing, training/testing/validating setup, and contains the actual model.

static add_model_specific_args(parent_parser)
Arguments specific to this model

compute_loss(outputs, labels, mask)
Compute the loss between model outputs and ground-truth labels.

Parameters

• outputs (torch.Tensor) – Output sentence scores obtained from forward()

• labels (torch.Tensor) – Ground-truth labels (1 for sentences that should be in the sum-
mary, 0 otherwise) from the batch generated during the data preprocessing stage.

• mask (torch.Tensor) – Mask returned by forward(), either sent_rep_mask or
sent_lengths_mask depending on the pooling mode used during model initialization.

Returns

Losses: (total_loss, total_norm_batch_loss, sum_avg_seq_loss, mean_avg_seq_loss, av-
erage_loss)

Return type [tuple]

configure_optimizers()
Configure the optimizers. Returns the optimizer and scheduler specified by the values in self.hparams.

forward(input_ids, attention_mask, sent_rep_mask=None, token_type_ids=None, sent_rep_token_ids=None,
sent_lengths=None, sent_lengths_mask=None, **kwargs)

Model forward function. See the 60 minute bliz tutorial if you are unsure what a forward function is.

Parameters

• input_ids (torch.Tensor) – Indices of input sequence tokens in the vocabulary. What
are input IDs?

• attention_mask (torch.Tensor) – Mask to avoid performing attention on padding to-
ken indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for
MASKED tokens. What are attention masks?
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• sent_rep_mask (torch.Tensor, optional) – Indicates which numbers in
sent_rep_token_ids are actually the locations of sentence representation ids and
which are padding. Defaults to None.

• token_type_ids (torch.Tensor, optional) – Usually, segment token indices to in-
dicate first and second portions of the inputs. However, for summarization they are used to
indicate different sentences. Depending on the size of the token type id vocabulary, these
values may alternate between 0 and 1 or they may increase sequentially for each sentence
in the input.. Defaults to None.

• sent_rep_token_ids (torch.Tensor, optional) – The locations of the sentence
representation tokens. Defaults to None.

• sent_lengths (torch.Tensor, optional) – A list of the lengths of each sentence in
input_ids. See data.pad_batch_collate() for more info about the generation of
thisfeature. Defaults to None.

• sent_lengths_mask (torch.Tensor, optional) – Created on-the-fly by data.
pad_batch_collate(). Similar to sent_rep_mask: 1 for value and 0 for padding. See
data.pad_batch_collate() for more info about the generation of this feature. Defaults
to None.

Returns Contains the sentence scores and mask as torch.Tensors. The mask is either the
sent_rep_mask or sent_lengths_mask depending on the pooling mode used during
model initialization.

Return type tuple

freeze_web_model()
Freezes the encoder word_embedding_model

json_to_dataset(tokenizer, hparams, inputs=None, num_files=0, processor=None)
Convert json output from convert_to_extractive.py to a “.pt” file containing lists or tensors using a
data.SentencesProcessor. This function is run by prepare_data() in parallel.

Parameters

• tokenizer (transformers.PreTrainedTokenizer) – Tokenizer used to convert ex-
amples to input_ids. Usually is self.tokenizer.

• hparams (argparse.Namespace) – Hyper-parameters used to create the model. Usually
is self.hparams.

• inputs (tuple, optional) – (idx, json_file) Current loop index and path to json file.
Defaults to None.

• num_files (int, optional) – The total number of files to process. Used to display a
nice progress indicator. Defaults to 0.

• processor (data.SentencesProcessor, optional) – The data.
SentencesProcessor object to convert the json file to usable features. Defaults
to None.

predict(input_text: str, raw_scores=False, num_summary_sentences=3)
Summarizes input_text using the model.

Parameters

• input_text (str) – The text to be summarized.

• raw_scores (bool, optional) – Return a list containing each sentence and its core-
spoding score instead of the summary. Defaults to False.
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• num_summary_sentences (int, optional) – The number of sentences in the output
summary. This value specifies the number of top sentences to select as the summary. De-
faults to 3.

Returns The summary text. If raw_scores is set then returns a list of input sentences and their
corespoding scores.

Return type str

predict_sentences(input_sentences: Union[List[str], generator], raw_scores=False,
num_summary_sentences=3, tokenized=False)

Summarizes input_sentences using the model.

Parameters

• input_sentences (list or generator) – The sentences to be summarized as a list
or a generator of spacy Spans (spacy.tokens.span.Span), which can be obtained by
running nlp("input document").sentswhere nlp is a spacy model with a sentencizer.

• raw_scores (bool, optional) – Return a list containing each sentence and its core-
spoding score instead of the summary. Defaults to False.

• num_summary_sentences (int, optional) – The number of sentences in the output
summary. This value specifies the number of top sentences to select as the summary. De-
faults to 3.

• tokenized (bool, optional) – If the input sentences are already tokenized using spacy.
If true, input_sentences should be a list of lists where the outer list contains sentences
and the inner lists contain tokens. Defaults to False.

Returns The summary text. If raw_scores is set then returns a list of input sentences and their
corespoding scores.

Return type str

prepare_data()
Runs json_to_dataset() in parallel. json_to_dataset() is the function that actually loads
and processes the examples as described below. Algorithm: For each json file outputted by the
convert_to_extractive.py script:

1. Load json file.

2. Add each document in json file to SentencesProcessor defined in self.processor, overwrit-
ing any previous data in the processor.

3. Run data.SentencesProcessor.get_features() to save the extracted features to disk as a .
pt file containing a pickled python list of dictionaries, which each dictionary contains the extracted
features.

Memory Usage Note: If sharding was turned off during the convert_to_extractive process
then this function will run once, loading the entire dataset into memory to process just like the
convert_to_extractive.py script.

setup(stage)
Download the word_embedding_model if the model will be trained.

test_dataloader()
Create dataloader for testing.

test_epoch_end(outputs)
Called at the end of a testing epoch: PyTorch Lightning Documentation Finds the mean of all the metrics
logged by test_step().
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test_step(batch, batch_idx)
Test step: PyTorch Lightning Documentation Similar to validation_step() in that in runs the inputs
through the model. However, this method also calculates the ROUGE scores for each example-summary
pair.

train_dataloader()
Create dataloader for training if it has not already been created.

training: bool

training_step(batch, batch_idx)
Training step: PyTorch Lightning Documentation

unfreeze_web_model()
Un-freezes the word_embedding_model

val_dataloader()
Create dataloader for validation.

validation_epoch_end(outputs)
Called at the end of a validation epoch: PyTorch Lightning Documentation Finds the mean of all the metrics
logged by validation_step().

validation_step(batch, batch_idx)
Validation step: PyTorch Lightning Documentation Similar to training_step() in that in runs the inputs
through the model. However, this method also calculates accuracy and f1 score by marking every sentence
score >0.5 as 1 (meaning should be in the summary) and each score <0.5 as 0 (meaning should not be in
the summary).

extractive.longformer_modifier(final_dictionary)
Creates the global_attention_mask for the longformer. Tokens with global attention attend to all other to-
kens, and all other tokens attend to them. This is important for task-specific finetuning because it makes the
model more flexible at representing the task. For example, for classification, the <s> token should be given
global attention. For QA, all question tokens should also have global attention. For summarization, global at-
tention is given to all of the <s> (RoBERTa ‘CLS’ equivalent) tokens. Please refer to the Longformer paper for
more details. Mask values selected in [0, 1]: 0 for local attention, 1 for global attention.

12.2 Data

class data.FSDataset(files_list, shuffle=True, verbose=False)

get_files_lengths(files_list)

class data.FSIterableDataset(files_list, shuffle=True, verbose=False)
A dataset to yield examples from a list of files that are saved python objects that can be iterated over. These files
could be other PyTorch datasets (tested with TensorDataset) or other python objects such as lists, for example.
Each file will be loaded one at a time until all the examples have been yielded, at which point the next file will
be loaded and used to yield examples, and so on. This means a large dataset can be broken into smaller chunks
and this class can be used to load samples as if those files were one dataset while only utilizing the ram required
for one chunk.

Explanation about batch_size and __len__(): If the len() function is needed to be accurate then the
batch_size must be specified when constructing objects of this class. PyTorch DataLoader objects will report
accurate lengths by dividing the number of examples in the dataset by the batch size only if the dataset if not an
IterableDataset. If the dataset is an IterableDataset then a DataLoader will simply ask the dataset for
its length, without diving by the batch size, because in some cases the length of an IterableDataset might
be difficult or impossible to determine. However, in this case the number of examples (length of dataset) is
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known. The division by batch size must happen in the dataset (for datasets of type IterableDataset) since the
DataLoader will not calculate this.

class data.InputExample(text, labels, guid=None, target=None)

to_dict()
Serializes this instance to a Python dictionary.

to_json_string()
Serializes this instance to a JSON string.

class data.InputFeatures(input_ids, attention_mask=None, token_type_ids=None, labels=None,
sent_rep_token_ids=None, sent_lengths=None, source=None, target=None)

A single set of features of data.

Parameters

• input_ids – Indices of input sequence tokens in the vocabulary.

• attention_mask – Mask to avoid performing attention on padding token indices. Mask
values selected in [0, 1]: Usually 1 for tokens that are NOT MASKED, 0 for MASKED
(padded) tokens.

• token_type_ids – Usually, segment token indices to indicate first and second portions
of the inputs. However, for summarization they are used to indicate different sentences.
Depending on the size of the token type id vocabulary, these values may alternate between
0 and 1 or they may increase sequentially for each sentence in the input.

• labels – Labels corresponding to the input.

• sent_rep_token_ids – The locations of the sentence representation tokens.

• sent_lengths – A list of the lengths of each sentence in the source and input_ids.

• source – The actual source document as a list of sentences.

• target – The ground truth abstractive summary.

to_dict()
Serializes this instance to a Python dictionary.

to_json_string()
Serializes this instance to a JSON string.

class data.SentencesProcessor(name=None, labels=None, examples=None, verbose=False)
Create a SentencesProcessor

Parameters

• name (str, optional) – A label for the SentencesProcessor object, used internally for
saving if a save name is not specified in data.SentencesProcessor.get_features(),
Default is None.

• labels (list, optional) – The label that goes with each sample, can be a list of lists
where the inside lists are the labels for each sentence in the coresponding example. Default
is None.

• examples (list, optional) – List of InputExamples. Default is None.

• verbose (bool, optional) – Log extra information (such as examples of processed data
points). Default is False.
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add_examples(texts, labels=None, ids=None, oracle_ids=None, targets=None, overwrite_labels=False,
overwrite_examples=False)

Primary method of adding example sets of texts, labels, ids, and targets to the SentencesProcessor

Parameters

• texts (list) – A list of documents where each document is a list of sentences where each
sentence is a list of tokens. This is the output of convert_to_extractive.py and is in the ‘src’
field for each doc. See extractive.ExtractiveSummarizer.prepare_data().

• labels (list, optional) – A list of the labels for each document where each label is a
list of labels where the index of the label coresponds with the index of the sentence in the
respective entry in texts. Similarly to texts, this is handled automatically by ExtractiveSum-
marizer.prepare_data. Default is None.

• ids (list, optional) – A list of ids for each document. Not used by ExtractiveSumma-
rizer. Default is None.

• oracle_ids (list, optional) – Similar to labels but is a list of indexes of the chosen
sentences instead of a one-hot encoded vector. These will be converted to labels. Default
is None.

• targets (list, optional) – A list of the abstractive target for each document. Default
is None.

• overwrite_labels (bool, optional) – Replace any labels currently stored by the
SentencesProcessor. Default is False.

• overwrite_examples (bool, optional) – Replace any examples currently stored by
the SentencesProcessor. Default is False.

Returns The examples as InputExamples that have been added.

Return type list

classmethod create_from_examples(texts, labels=None, **kwargs)
Create a SentencesProcessor with **kwargs and add texts and labels` through add_examples().

get_features(tokenizer, bert_compatible_cls=True, create_sent_rep_token_ids=True,
sent_rep_token_id=None, create_sent_lengths=True, create_segment_ids='binary',
segment_token_id=None, create_source=False, n_process=2, max_length=None,
pad_on_left=False, pad_token=0, mask_padding_with_zero=True,
create_attention_mask=True, pad_ids_and_attention=True, return_type=None,
save_to_path=None, save_to_name=None, save_as_type='txt')

Convert the examples stored by the SentencesProcessor to features that can be used by a model. The
following processes can be performed: tokenization, token type ids (to separate sentences), sentence repre-
sentation token ids (the locations of each sentence representation token), sentence lengths, and the attention
mask. Padding can be applied to the tokenized examples and the attention masks but it is recommended to
instead use the data.pad_batch_collate() function so each batch is padded individually for efficiency
(less zeros passed through model).

Parameters

• tokenizer (transformers.PreTrainedTokenizer) – The tokenizer used to tokenize
the examples.

• bert_compatible_cls (bool, optional) – Adds ‘[CLS]’ tokens in front of each sen-
tence. This is useful so that the ‘[CLS]’ token can be used to obtain sentence embeddings.
This only works if the chosen model has the ‘[CLS]’ token in its vocabulary. Default is
True.
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• create_sent_rep_token_ids (bool, optional) – Option to create sentence repre-
sentation token ids. This will store a list of the indexes of all the sent_rep_token_ids in
the tokenized example. Default is True.

• sent_rep_token_id ([type], optional) – The token id that should be captured for
each sentence (should have one per sentence and each should represent that sentence).
Default is '[CLS]' token if bert_compatible_cls else '[SEP]' token.

• create_sent_lengths (bool, optional) – Option to create a list of sentence lengths
where each index in the list coresponds to the respective sentence in the example. Default
is True.

• create_segment_ids (str, optional) – Option to create segment ids (aka token type
ids). See https://huggingface.co/transformers/glossary.html#token-type-ids for more info.
Set to either “binary”, “sequential”, or False.

– binary alternates between 0 and 1 for each sentence.

– sequential starts at 0 and increments by 1 for each sentence.

– False does not create any segment ids.

Note: Many pretrained models that accept token type ids use them for question answering
ans related tasks where the model receives two inputs. Therefore, most models have a
token type id vocabulary size of 2, which means they only have learned 2 token type ids.
The “binary” mode exists so that these pretrained models can easily be used. Default is
“binary”.

• segment_token_id (str, optional) – The token id to be used when creating segment
ids. Can be set to ‘period’ to treat periods as sentence separation tokens, but this is a terrible
idea for obvious reasons. Default is ‘[SEP]’ token id.

• create_source (bool, optional) – Option to save the source text (non-tokenized) as
a string. Default is False.

• n_process (int, optional) – How many processes to use for multithreading for run-
ning get_features_process(). Set higher to run faster and set lower is you experience OOM
issues. Default is 2.

• max_length (int, optional) – If pad_ids_and_attention is True then pad to this
amount. Default is tokenizer.max_len.

• pad_on_left (bool, optional) – Optionally, pad on the left instead of right. Default
is False.

• pad_token (int, optional) – Which token to use for padding the input_ids. Default
is 0.

• mask_padding_with_zero (bool, optional) – Use zeros to pad the attention. Uses
ones otherwise. Default is True.

• create_attention_mask (bool, optional) – Option to create the attention mask. It
is recommended to use the data.pad_batch_collate() function, which will automat-
ically create attention masks and pad them on a per batch level. Default is False if
return_type == "lists" else True.

• pad_ids_and_attention (bool, optional) – Pad the input_ids with pad_token
and attention masks with 0s or 1s deneding on mask_padding_with_zero. Pad both to
max_length. Default is False if return_type == "lists" else True

• return_type (str, optional) – Either “tensors”, “lists”, or None. See “Returns” sec-
tion below. Default is None.
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• save_to_path (str, optional) – The folder/directory to save the data to OR None to
not save. Will save the data specified by return_type to disk. Default is None.

• save_to_name (str, optional) – The name of the file to save. The extension ‘.pt’ is
automatically appended. Default is 'dataset_' + self.name + '.pt'.

• save_as_type (str, optional) – The file extension of saved file if save_to_path is set.
Supports “pt” (PyTorch) and “txt” (Text). Saving as “txt” requires the return_type to be
lists. If return_type is tensors the only save_as_type available is “pt”. Defaults
to “txt”.

Returns If return_type is None return the list of calculated features. If return_type ==
"tensors" return the features converted to tensors and stacked such that features are grouped
together into individual tensors. If return_type == "lists", which is the recommended
option then exports each InputFeatures object in the exported features list as a dictionary
and appends each dictionary to a list. Returns that list.

Return type list or torch.TensorDataset

get_features_process(input_information, num_examples=0, tokenizer=None, bert_compatible_cls=True,
sep_token=None, cls_token=None, create_sent_rep_token_ids=True,
sent_rep_token_id=None, create_sent_lengths=True, create_segment_ids='binary',
segment_token_id=None, create_source=False, max_length=None,
pad_on_left=False, pad_token=0, mask_padding_with_zero=True,
create_attention_mask=True, pad_ids_and_attention=True)

The process that actually creates the features. get_features() is the driving function, look there for a
description of how this function works. This function only exists so that processing can easily be done in
parallel using Pool.map.

classmethod get_input_ids(tokenizer, src_txt, bert_compatible_cls=True, sep_token=None,
cls_token=None, max_length=None)

Get input_ids from src_txt using tokenizer. See get_features() for more info.

load(load_from_path, dataset_name=None)
Attempts to load the dataset from storage. If that fails, will return None.

data.pad_batch_collate(batch, modifier=None)
Collate function to be passed to DataLoaders. PyTorch Docs: https://pytorch.org/docs/stable/data.html#
dataloader-collate-fn

Calculates padding (per batch for efficiency) of labels and token_type_ids if they exist within the batch from
the Dataset. Also, pads sent_rep_token_ids and creates the sent_rep_mask to indicate which numbers in
the sent_rep_token_ids list are actually the locations of sentence representation ids and which are padding.
Finally, calculates the attention_mask for each set of input_ids and pads both the attention_mask and
the input_ids. Converts all inputs to tensors.

If sent_lengths are found then they will also automatically be padded. However, the padding for sentence
lengths is complicated. Each list of sentence lengths needs to be the length of the longest list of sentence lengths
and the sum of all the lengths in each list needs to add to the length of the input_ids width (the length of each
input_id). The second requirement exists because torch.split() (which is used in the mean_tokens pooling
algorithm to convert word vectors to sentence embeddings in pooling.py) will split a tensor into the lengths
requested but will error instead of returning any extra. However, torch.split() will split a tensor into zero
length segments. Thus, to solve this, zeros are added to each sentence length list for each example until one more
padding value is needed to get the maximum number of sentences. Once only one more value is needed, the total
value needded to reach the width of the input_ids is added.

source and target, if present, are simply passed on without any processing. Therefore, the standard
collate_fn function for DataLoaders will not work if these are present since they cannot be converted to
tensors without padding. This collate_fn must be used if source or target is present in the loaded dataset.
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The modifier argument accepts a function that takes the final_dictionary and returns a modified
final_dictionary. The modifier function will be called directly before final_dictionary is returned
in pad_batch_collate(). This allows for easy extendability.

12.3 Pooling

class pooling.Pooling(sent_rep_tokens=True, mean_tokens=False, max_tokens=False)
Methods to obtains sentence embeddings from word vectors. Multiple methods can be specificed and their results
will be concatenated together.

Parameters

• sent_rep_tokens (bool, optional) – Use the sentence representation token as sentence
embeddings. Default is True.

• mean_tokens (bool, optional) – Take the mean of all the token vectors in

• False. (each sentence. Default is) –

forward(word_vectors=None, sent_rep_token_ids=None, sent_rep_mask=None, sent_lengths=None,
sent_lengths_mask=None)

Forward pass of the Pooling nn.Module.

Parameters

• word_vectors (torch.Tensor, optional) – Vectors representing words created by a
word_embedding_model. Defaults to None.

• sent_rep_token_ids (torch.Tensor, optional) – See extractive.
ExtractiveSummarizer.forward(). Defaults to None.

• sent_rep_mask (torch.Tensor, optional) – See extractive.
ExtractiveSummarizer.forward(). Defaults to None.

• sent_lengths (torch.Tensor, optional) – See extractive.
ExtractiveSummarizer.forward(). Defaults to None.

• sent_lengths_mask (torch.Tensor, optional) – See extractive.
ExtractiveSummarizer.forward(). Defaults to None.

Returns (output_vector, output_mask) Contains the sentence scores and mask as torch.
Tensors. The mask is either the sent_rep_mask or sent_lengths_mask depending on
the pooling mode used during model initialization.

Return type tuple

training: bool

12.4 Classifier

class classifier.LinearClassifier(web_hidden_size, linear_hidden=1536, dropout=0.1,
activation_string='gelu')

nn.Module to classify sentences by reducing the hidden dimension to 1.

Parameters

• web_hidden_size (int) – The output hidden size from the word embedding model. Used
as the input to the first linear layer in this nn.Module.
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• linear_hidden (int, optional) – The number of hidden parameters for this Classifier.
Default is 1536.

• dropout (float, optional) – The value for dropout applied before the 2nd linear layer.
Default is 0.1.

• activation_string (str, optional) – A string representing an activation function in
get_activation() Default is “gelu”.

forward(x, mask)
Forward function. x is the input sent_vector tensor and mask avoids computations on padded values.
Returns sent_scores.

training: bool

class classifier.SimpleLinearClassifier(web_hidden_size)
nn.Module to classify sentences by reducing the hidden dimension to 1. This module contains a single linear
layer and a sigmoid.

Parameters web_hidden_size (int) – The output hidden size from the word embedding model.
Used as the input to the first linear layer in this nn.Module.

forward(x, mask)
Forward function. x is the input sent_vector tensor and mask avoids computations on padded values.
Returns sent_scores.

training: bool

class classifier.TransformerEncoderClassifier(d_model, nhead=8, dim_feedforward=2048,
dropout=0.1, num_layers=2, custom_reduction=None)

nn.Module to classify sentences by running the sentence vectors through some nn.TransformerEncoder lay-
ers and then reducing the hidden dimension to 1 with a linear layer.

Parameters

• d_model (int) – The number of expected features in the input

• nhead (int, optional) – The number of heads in the multiheadattention models. Default
is 8.

• dim_feedforward (int, optional) – The dimension of the feedforward network model.
Default is 2048.

• dropout (float, optional) – The dropout value. Default is 0.1.

• num_layers (int, optional) – The number of TransformerEncoderLayers. Default
is 2.

• reduction (nn.Module, optional) – a nn.Module that maps d_model inputs to 1 value;
if not specified then a nn.Sequential() module consisting of a linear layer and a sigmoid
will automatically be created. Default is nn.Sequential(linear, sigmoid).

forward(x, mask)
Forward function. x is the input sent_vector tensor and mask avoids computations on padded values.
Returns sent_scores.

training: bool
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12.5 Convert To Extractive

convert_to_extractive.cal_rouge(evaluated_ngrams, reference_ngrams)

convert_to_extractive.check_resume_success(nlp, args, source_file, last_shard, output_path, split,
compression)

convert_to_extractive.combination_selection(doc_sent_list, abstract_sent_list, summary_size)

convert_to_extractive.convert_to_extractive_driver(args)
Driver function to convert an abstractive summarization dataset to an extractive dataset. The abstractive dataset
must be formatted with two files for each split: a source and target file. Example file list for two splits: ["train.
source", "train.target", "val.source", "val.target"]

convert_to_extractive.convert_to_extractive_process(args, nlp, source_docs, target_docs, name,
piece_idx=None)

Main process to convert an abstractive summarization dataset to extractive. Tokenizes, gets the oracle_ids,
splits into source and labels, and saves processed data.

convert_to_extractive.example_processor(inputs, args, oracle_mode='greedy', no_preprocess=False)
Create oracle_ids, convert them to labels and run preprocess().

convert_to_extractive.greedy_selection(doc_sent_list, abstract_sent_list, summary_size)

convert_to_extractive.preprocess(example, labels, min_sentence_ntokens=5, max_sentence_ntokens=200,
min_example_nsents=3, max_example_nsents=100)

Removes sentences that are too long/short and examples that have too few/many sentences.

convert_to_extractive.read_in_chunks(file_object, chunk_size=5000)
Read a file line by line but yield chunks of chunk_size number of lines at a time.

convert_to_extractive.resume(output_path, split, chunk_size)
Find the last shard created and return the total number of lines read and last shard number.

convert_to_extractive.save(json_to_save, output_path, compression=False)
Save json_to_save to output_path with optional gzip compresssion specified by compression.

convert_to_extractive.seek_files(files, line_num)
Seek a set of files to line number line_num and return the files.

convert_to_extractive.tokenize(nlp, docs, n_process=5, batch_size=100, name='',
tokenizer_log_interval=0.1, disable_progress_bar=False)

Tokenize using spacy and split into sentences and tokens.
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THIRTEEN

ABSTRACTIVE PRE-TRAINED MODELS & RESULTS

13.1 BART Converted to LongformerEncoderDecoder

Important: The models in this section are the output from the convert_bart_to_longformerencoderdecoder.py script
without any gradient updates. This means that they need to be fine-tuned on a long document summarization dataset,
such as Arxiv-PubMed, in order to create a model that can summarize long sequences.

The additional position embeddings for these models were initialized by copying the embeddings of the first 512
positions. This initialization is crucial for the model performance (check table 6 in the longformer paper for performance
without this initialization).

The models output from the convert_bart_to_longformerencoderdecoder.py script do not work for long doc-
uments without further training. Tables 6 and 11 in the longformer paper suggest that models converted to be able
to handle long content may perform well before any additional gradient updates. However, this does not appear to
be true for summarization. The converted facebook/bart-large-cnn model from huggingface/transformers
(aka longformer-encdec-bart-large-cnn-converted) produces almost random summaries that rarely pertain
to the input document. Thus, these models need to be fine-tuned on a long document summarization dataset.

These are huggingface/transformers models, so they need to be used with the --model_name_or_path op-
tion. They can also be loaded directly in huggingface/transformers using LEDForConditionalGeneration.
from_pretrained().

The Google Drive folder containing my contributions to the below models is available at this link.

Name (Shortcut Code) Initialized From GDrive Download
allenai/led-base-16384 facebook/bart-base
allenai/led-large-16384 facebook/bart-large
HHousen/distil-led-large-cnn-16384 sshleifer/distilbart-cnn-12-6 Folder Link

Note: In pervious versions of TransformerSum, this section listed models that could be used with the outdated LED
model (using custom versions of huggingface/transformers and allenai/longformer). Those models can still
be found in this Google Drive Folder.
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13.2 arXiv-PubMed

Name Comments Model Download Data Download
led-base-4096-arxiv-pubmed None Model & All Checkpoints Not yet..
led-large-4096-arxiv-pubmed None Not yet. . . Not yet..
led-base-16384-arxiv-pubmed None Not yet. . . Not yet..
led-large-16384-arxiv-pubmed None Not yet. . . Not yet..

13.2.1 arXiv-PubMed ROUGE Scores

Test set results on the arXiv-PubMed dataset using ROUGE F1.

Name ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-Sum
led-base-4096-arxiv-pubmed Not yet. . . Not yet. . . Not yet. . . Not yet. . .
led-large-4096-arxiv-pubmed Not yet. . . Not yet. . . Not yet. . . Not yet. . .
led-base-16384-arxiv-pubmed Not yet. . . Not yet. . . Not yet. . . Not yet. . .
led-large-16384-arxiv-pubmed Not yet. . . Not yet. . . Not yet. . . Not yet. . .

13.3 Individual ArXiv and PubMed models

The huggingface model hub has two pre-trained models for long text summarization: allenai/led-large-16384-arxiv
and patrickvonplaten/led-large-16384-pubmed. These models can be used with pipelines to easily summarize long
documents. Please see their model cards (by clicking on their names above) for more information.
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ABSTRACTIVE SUPPORTED DATASETS

All of the summarization datasets from the huggingface/nlp library are supported. Only 4 options (specifically
--dataset, --dataset_version, --data_example_column, and --data_summarized_column) have to be
changed to train a model on a new dataset.

The most notable datasets (the ones pertaining to summarization) are listed below.

Warning: The nlp library uses arrow files which are not heavily compressed and can become large quite quickly.
Thus, depending on your internet connection, hardware, and the size of the dataset it might be faster to reprocess
the data than to download the pre-processed data.

If you download the preprocessed data, you can use it by setting the --cache_file_path option to the path containing
the train_tokenized, validation_tokenized, and test_tokenized files.

Dataset Name Processing Time Preprocessed Data Download
cnn_dailymail 30m / 59m bert-base-uncased & longformer-encdec-base-4096
scientific_papers 2h-4h longformer-encdec-base-4096 & longformer-encdec-base-8192
newsroom
reddit
multi_news
gigaword
billsum
wikihow
redit_tifu
xsum
opinosis

The live nlp viewer visualizes the data and describes each dataset.

14.1 Custom Datasets

You can use a custom dataset with the abstractive training script. The data needs to be stored in three Apache Arrow files:
training, validation, and testing. You can specify the article and summary columns with --data_example_column
and --data_summarized_column, respectfully. The --dataset argument allows multiple paths to be specified like
so: --dataset /path/to/train /path/to/valid /path/to/test. The files must be specified in train, vali-
dation, test order and each path must have a slash (“/”) in it. Inputs without a slash are interpreted as huggingface/
nlp dataset names. Essentially, if your data is stored in three Arrow files (one for each split) and has at least 2 columns
with the article and summary, then it is supported.
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A convince script is provided at scripts/convert_to_arrow.py to convert JSON datasets to the Arrow format. It
will convert a list of JSON files to Arrow files and then combine them into one file. Each JSON file is sequentially
loaded into RAM so only one JSON file will be in RAM at a time. The final combined file is memory mapped so RAM
usage will be close to zero during the combination stage. The maximum memory usage throughout the duration of the
script will be the size of the largest input JSON file.

Output of python scripts/convert_to_arrow.py --help:

usage: convert_to_arrow.py [-h] [--file_paths FILE_PATHS [FILE_PATHS ...]] [--save_path␣
→˓SAVE_PATH]

[--cache_path_prefix CACHE_PATH_PREFIX] [--no_combine]

optional arguments:
-h, --help show this help message and exit
--file_paths FILE_PATHS [FILE_PATHS ...]

The paths to the JSON files to convert to arrow and combine.
--save_path SAVE_PATH

The path to save the combined arrow file to. Defaults to './
→˓data.arrow'.

--cache_path_prefix CACHE_PATH_PREFIX
The cache path and file name prefix for the converted JSON␣

→˓files. Defaults to './data_chunk'.
--no_combine Don't combine the converted JSON files.
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TRAINING AN ABSTRACTIVE SUMMARIZATION MODEL

You can finetune/train abstractive summarization models such as BART and T5 with this script. You can also
train models consisting of any encoder and decoder combination with an EncoderDecoderModel by specifying the
--decoder_model_name_or_path option (the --model_name_or_path argument specifies the encoder when us-
ing this configuration).

Alternatives:

• While you can use this script to load a pre-trained BART or T5 model and perform inference, it is recommended
to use a huggingface/transformers summarization pipeline.

• To summarize PDF documents efficiently check out HHousen/DocSum.

• To summarize documents and strings of text using PreSumm please visit HHousen/DocSum.

• You can also use the summarization examples in huggingface/transformers, which are similar to this script, to
train a model for seq2seq tasks. Most notably, the huggingface scripts don’t integrate with nlp for easy and
efficient dataset processing or make it easy to train EncoderDecoderModels.

Note: Version 3.1.0 of huggingface/transformers enhances the encoder-decoder framework to allow for more encoder
decoder model combinations such as Bert2GPT2, Roberta2Roberta, and Longformer2Roberta. Patrick von Platen has
trained and tested some of these model combinations using custom scripts. His results can be found at this hugging-
face/models page.

The effectiveness of initializing sequence-to-sequence models with pre-trained checkpoints for sequence generation
tasks was shown in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi
Narayan, Aliaksei Severyn. Results for EncoderDecoderModels can be found in this paper. This script should be
able to produce similar results to this paper.

Important: This script acts like a data preparation, training loop logic, and evaluation wrapper around mod-
els from huggingface/transformers. For this reason, you can specify the --save_hg_transformer op-
tion, which will save the huggingface/transformers model whenever a checkpoint is saved using model.
save_pretrained(save_path). Then, the trained model can be loaded without the TransformerSum library using
just huggingface/transformers in the future by running AutoModelForSeq2SeqLM.from_pretrained() (or
EncoderDecoderModel.from_pretrained() if --decoder_model_name_or_path was used during training).

87

https://huggingface.co/transformers/model_doc/bart.html
https://huggingface.co/transformers/model_doc/t5.html
https://huggingface.co/transformers/model_doc/encoderdecoder.html
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.10683
https://huggingface.co/transformers/main_classes/pipelines.html#summarizationpipeline
https://github.com/HHousen/DocSum
https://arxiv.org/abs/1908.08345
https://github.com/HHousen/DocSum
https://github.com/huggingface/transformers/tree/master/examples/seq2seq
https://huggingface.co/models?search=cnn_dailymail-fp16
https://huggingface.co/models?search=cnn_dailymail-fp16
https://arxiv.org/abs/1907.12461


TransformerSum, Release 1.0.0

15.1 Example

Example training command:

python main.py \
--mode abstractive \
--model_name_or_path bert-base-uncased \
--decoder_model_name_or_path bert-base-uncased \
--cache_file_path data \
--max_epochs 4 \
--do_train --do_test \
--batch_size 4 \
--weights_save_path model_weights \
--no_wandb_logger_log_model \
--accumulate_grad_batches 5 \
--use_scheduler linear \
--warmup_steps 8000 \
--gradient_clip_val 1.0 \
--custom_checkpoint_every_n 300

This command will train and test a bert-to-bert model for abstractive summarization for 4 epochs with a batch
size of 4. The weights are saved to model_weights/ and will not be uploaded to wandb.ai due to the
--no_wandb_logger_log_model option. The CNN/DM dataset (which is the default dataset) will be downloaded
(and automatically processed) to data/. The gradients will be accumulated every 5 batches and training will be opti-
mized by AdamW with a scheduler that warms up linearly for 8000 then decays. A checkpoint file will be saved every
300 steps.

Importantly, you can specify the --tie_encoder_decoder option to tie the weights of the encoder and decoder when
using an EncoderDecoderModel architecture. Specifying this option is equivalent to the “share” architecture tested
in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks.

15.2 Abstractive Long Summarization

This script can perform abstractive summarization on long sequences using the LongformerEncoderDecoder model.
LongformerEncoderDecoder is BART (paper) but with components from the longformer (paper) that enable it to
operate with long sequences.

During the development phase of the LED, LED installation and usage was complicated. Now, it is as simple as setting
the --model_name_or_path option to a model from the LED community models page.

Important: You can adjust the sequence length that the trained LED model will be able to handle by modifying the
--model_max_length argument. This option controls the length of sequences during the data processing stage. So,
this option will have no effect with pre-compiled datasets listed under the “Preprocessed Data Download” heading on
Abstractive Supported Datasets.

GitHub issues that discussed the creation of LongformerEncoderDecoder:

1. huggingface/transformers #4406

2. allenai/longformer #28
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15.2.1 Step-by-Step Instructions

1. Download dataset (2.8GB): gdown https://drive.google.com/uc?id=1rRzLwCl-s84Ji4ZfvfKV_iWunOy_cbE2

2. Extract (90GB): tar -xzvf longformer-encdec-base-8192.tar.gz

3. Training command:

python main.py \
--mode abstractive \
--model_name_or_path allenai/led-base-16384 \
--max_epochs 4 \
--dataset scientific_papers \
--do_train \
--precision 16 \
--amp_level O2 \
--sortish_sampler \
--batch_size 8 \
--gradient_checkpointing \
--label_smoothing 0.1 \
--accumulate_grad_batches 2 \
--use_scheduler linear \
--warmup_steps 16000 \
--gradient_clip_val 1.0 \
--cache_file_path longformer-encdec-base-8192 \
--nlp_cache_dir nlp-cache \
--custom_checkpoint_every_n 18000

4. The --max_epochs, --batch_size, --accumulate_grad_batches, --warmup_steps, and
--custom_checkpoint_every_n values will need to be tweaked.

15.3 Script Help

Output of python main.py --mode abstractive --help (generic options removed):

usage: main.py [-h]
[--model_name_or_path MODEL_NAME_OR_PATH]
[--decoder_model_name_or_path DECODER_MODEL_NAME_OR_PATH]
[--batch_size BATCH_SIZE] [--val_batch_size VAL_BATCH_SIZE]
[--test_batch_size TEST_BATCH_SIZE]
[--dataloader_num_workers DATALOADER_NUM_WORKERS] [--only_preprocess]
[--no_prepare_data] [--dataset DATASET [DATASET ...]]
[--dataset_version DATASET_VERSION] [--data_example_column DATA_EXAMPLE_

→˓COLUMN]
[--data_summarized_column DATA_SUMMARIZED_COLUMN]
[--cache_file_path CACHE_FILE_PATH] [--split_char SPLIT_CHAR]
[--use_percentage_of_data USE_PERCENTAGE_OF_DATA]
[--save_percentage SAVE_PERCENTAGE] [--save_hg_transformer] [--test_use_

→˓pyrouge]
[--sentencizer] [--gen_max_len GEN_MAX_LEN] [--label_smoothing LABEL_

→˓SMOOTHING]
[--sortish_sampler] [--nlp_cache_dir NLP_CACHE_DIR] [--tie_encoder_decoder]

(continues on next page)
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optional arguments:
--model_name_or_path MODEL_NAME_OR_PATH

Path to pre-trained model or shortcut name. A list of shortcut␣
→˓names

can be found at
https://huggingface.co/transformers/pretrained_models.html.␣

→˓Community-
uploaded models are located at https://huggingface.co/models.␣

→˓Default
is 'bert-base-uncased'.

--decoder_model_name_or_path DECODER_MODEL_NAME_OR_PATH
Path to pre-trained model or shortcut name to use as the decoder␣

→˓if an
EncoderDecoderModel architecture is desired. If this option is␣

→˓not
specified, the shortcut name specified by `--model_name_or_path`␣

→˓is
loaded using the Seq2seq AutoModel. Default is 'bert-base-uncased

→˓'.
--batch_size BATCH_SIZE

Batch size per GPU/CPU for training/evaluation/testing.
--val_batch_size VAL_BATCH_SIZE

Batch size per GPU/CPU for evaluation. This option overwrites
`--batch_size` for evaluation only.

--test_batch_size TEST_BATCH_SIZE
Batch size per GPU/CPU for testing. This option overwrites
`--batch_size` for testing only.

--dataloader_num_workers DATALOADER_NUM_WORKERS
The number of workers to use when loading data. A general place␣

→˓to
start is to set num_workers equal to the number of CPUs on your
machine. More details here: https://pytorch-
lightning.readthedocs.io/en/latest/performance.html#num-workers

--only_preprocess Only preprocess and write the data to disk. Don't train model.
--no_prepare_data Don't download, tokenize, or prepare data. Only load it from files.
--dataset DATASET [DATASET ...]

The dataset name from the `nlp` library or a list of paths to␣
→˓Apache

Arrow files (that can be loaded with `nlp`) in the order train,
validation, test to use for training/evaluation/testing. Paths␣

→˓must
contain a '/' to be interpreted correctly. Default is `cnn_

→˓dailymail`.
--dataset_version DATASET_VERSION

The version of the dataset specified by `--dataset`.
--data_example_column DATA_EXAMPLE_COLUMN

The column of the `nlp` dataset that contains the text to be
summarized. Default value is for the `cnn_dailymail` dataset.

--data_summarized_column DATA_SUMMARIZED_COLUMN
The column of the `nlp` dataset that contains the summarized␣

→˓text.
Default value is for the `cnn_dailymail` dataset.

(continues on next page)
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--cache_file_path CACHE_FILE_PATH
Path to cache the tokenized dataset.

--split_char SPLIT_CHAR
If the `--data_summarized_column` is already split into␣

→˓sentences then
use this option to specify which token marks sentence boundaries.

→˓ If
the summaries are not split into sentences then spacy will be␣

→˓used to
split them. The default is None, which means to use spacy.

--use_percentage_of_data USE_PERCENTAGE_OF_DATA
When filtering the dataset, only save a percentage of the data.␣

→˓This is
useful for debugging when you don't want to process the entire␣

→˓dataset.
--save_percentage SAVE_PERCENTAGE

Percentage (divided by batch_size) between 0 and 1 of the␣
→˓predicted and

target summaries from the test set to save to disk during␣
→˓testing. This

depends on batch size: one item from each batch is saved
`--save_percentage` percent of the time. Thus, you can expect
`len(dataset)*save_percentage/batch_size` summaries to be saved.

--save_hg_transformer
Save the `huggingface/transformers` model whenever a checkpoint␣

→˓is
saved.

--test_use_pyrouge Use `pyrouge`, which is an interface to the official ROUGE␣
→˓software,

instead of the pure-python implementation provided by `rouge-
→˓score`.

You must have the real ROUGE package installed. More details␣
→˓about

ROUGE 1.5.5 here:
https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.

→˓5. It
is recommended to use this option for official scores. The␣

→˓`ROUGE-L`
measurements from `pyrouge` are equivalent to the `rougeLsum`
measurements from the default `rouge-score` package.

--sentencizer Use a spacy sentencizer instead of a statistical model for sentence
detection (much faster but less accurate) during data␣

→˓preprocessing;
see https://spacy.io/api/sentencizer.

--gen_max_len GEN_MAX_LEN
Maximum sequence length during generation while testing and when␣

→˓using
the `predict()` function.

--label_smoothing LABEL_SMOOTHING
`LabelSmoothingLoss` implementation from OpenNMT
(https://bit.ly/2ObgVPP) as stated in the original paper
https://arxiv.org/abs/1512.00567.

(continues on next page)
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--sortish_sampler Reorganize the input_ids by length with a bit of randomness. This␣
→˓can

help to avoid memory errors caused by large batches by forcing␣
→˓large

batches to be processed first.
--nlp_cache_dir NLP_CACHE_DIR

Directory to cache datasets downloaded using `nlp`. Defaults to
'~/nlp'.

--tie_encoder_decoder
Tie the encoder and decoder weights. Only takes effect when␣

→˓using an
EncoderDecoderModel architecture with the
`--decoder_model_name_or_path` option. Specifying this option is
equivalent to the 'share' architecture tested in 'Leveraging Pre-
trained Checkpoints for Sequence Generation Tasks'
(https://arxiv.org/abs/1907.12461).
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SIXTEEN

ABSTRACTIVE API REFERENCE

16.1 Model/Module

class abstractive.AbstractiveSummarizer(hparams)
A machine learning model that abstractively summarizes an input text using a seq2seq model. Main class that
handles the data loading, initial processing, training/testing/validating setup, and contains the actual model.

abs_collate_fn(batch, modifier=None)

static add_model_specific_args(parent_parser)
Arguments specific to this model

calculate_loss(prediction_scores, labels)

configure_optimizers()
Configure the optimizers. Returns the optimizer and scheduler specified by the values in self.hparams.

forward(source=None, target=None, source_mask=None, target_mask=None, labels=None, **kwargs)
Model forward function. See the 60 minute bliz tutorial if you are unsure what a forward function is.

Parameters

• source (torch.LongTensor of shape (batch_size, sequence_length), optional) –
Indices of input sequence tokens in the vocabulary for the encoder. What are input IDs?
Defaults to None.

• target (torch.LongTensor of shape (batch_size, target_sequence_length),
optional) – Provide for sequence to sequence training to the decoder. Defaults to None.

• source_mask (torch.FloatTensor of shape (batch_size, sequence_length), op-
tional) – Mask to avoid performing attention on padding token indices for the encoder.
Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED
tokens. Defaults to None.

• target_mask (torch.BoolTensor of shape (batch_size, tgt_seq_len), optional)
– source_mask but for the target sequence. Is an attention mask. Defaults to None.

• labels (torch.LongTensor of shape (batch_size, sequence_length), optional) –
Labels for computing the masked language modeling loss for the decoder. Indices should be
in [-100, 0, ..., config.vocab_size]. Tokens with indices set to -100 are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.
vocab_size] Defaults to None.

Returns (cross_entropy_loss, prediction_scores) The cross entropy loss and the prediction
scores, which are the scores for each token in the vocabulary for each token in the output.

Return type tuple
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ids_to_clean_text(generated_ids, replace_sep_with_q=False)
Convert IDs generated from tokenizer.encode to a string using tokenizer.batch_decode and also
clean up spacing and special tokens.

Parameters

• generated_ids (list) – A list examples where each example is a list of IDs generated
from tokenizer.encode.

• replace_sep_with_q (bool, optional) – Replace the self.tokenizer.
sep_token with “<q>”. Useful for determineing sentence boundaries and calculating
ROUGE scores. Defaults to False.

Returns A list of examples where each example is a string or just one string if only one example
was passed to this function.

Return type list or string

on_save_checkpoint(checkpoint)
Save the model in the huggingface/transformers format when a checkpoint is saved.

predict(input_sequence)
Summaries input_sequence using the model. Can summarize a list of sequences at once.

Parameters input_sequence (str or list[str]) – The text to be summarized.

Returns The summary text.

Return type str or list[str]

prepare_data()
Create the data using the huggingface/nlp library. This function handles downloading, preprocessing,
tokenization, and feature extraction.

setup(stage)
Load the data created by prepare_data(). The downloading and loading is broken into two functions
since prepare_data is only called from global_rank=0, and thus is not suitable for state (self.something)
assignment.

test_dataloader()
Create dataloader for testing.

test_epoch_end(outputs)
Called at the end of a testing epoch: PyTorch Lightning Documentation Finds the mean of all the metrics
logged by test_step().

test_step(batch, batch_idx)
Test step: PyTorch Lightning Documentation Similar to validation_step() in that in runs the inputs
through the model. However, this method also calculates the ROUGE scores for each example-summary
pair.

train_dataloader()
Create dataloader for training.

training: bool

training_step(batch, batch_idx)
Training step: PyTorch Lightning Documentation

val_dataloader()
Create dataloader for validation.

validation_step(batch, batch_idx)
Validation step: PyTorch Lightning Documentation

94 Chapter 16. Abstractive API Reference

https://pytorch-lightning.readthedocs.io/en/latest/api/pytorch_lightning.core.html#pytorch_lightning.core.LightningModule.test_epoch_end
https://pytorch-lightning.readthedocs.io/en/latest/api/pytorch_lightning.core.html#pytorch_lightning.core.LightningModule.test_step
https://pytorch-lightning.readthedocs.io/en/latest/api/pytorch_lightning.core.html#pytorch_lightning.core.LightningModule.training_step
https://pytorch-lightning.readthedocs.io/en/latest/api/pytorch_lightning.core.html#pytorch_lightning.core.LightningModule.validation_step


TransformerSum, Release 1.0.0

abstractive.longformer_modifier(final_dictionary, tokenizer, attention_window)
Creates the global_attention_mask for the longformer. Tokens with global attention attend to all other tokens,
and all other tokens attend to them. This is important for task-specific finetuning because it makes the model
more flexible at representing the task. For example, for classification, the <s> token should be given global
attention. For QA, all question tokens should also have global attention. For summarization, global attention
is given to all of the <s> (RoBERTa ‘CLS’ equivalent) tokens. Please refer to the Longformer paper for more
details. Mask values selected in [0, 1]: 0 for local attention, 1 for global attention.

abstractive.trim_batch(input_ids, pad_token_id, attention_mask=None)
Remove columns that are populated exclusively by pad_token_id.

16.1. Model/Module 95
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• genindex

• modindex
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